1.6 MiB
1.6 MiB
In [170]:
%matplotlib widget isdark = False from rayoptics.environment import *
In [171]:
opm = OpticalModel() sm = opm['seq_model'] osp = opm['optical_spec'] pm = opm['parax_model'] osp['pupil'] = PupilSpec(osp, key=['object', 'pupil'], value=16) osp['fov'] = FieldSpec(osp, key=['object', 'angle'], value=5, flds=[0., 0.707, 1.], is_relative=True) osp['wvls'] = WvlSpec([('F', 0.5), (587.5618, 1.0), ('C', 0.5)], ref_wl=1) opm.radius_mode = True sm.gaps[0].thi=1e10 def calc_curvature(n, fl): return (n-1)*fl n_bk7 = 1.5168 n_lasf9 = 1.85025 n_f2 = 1.62005 v_bk7 = 64.17 v_lasf9 = 32.16 v_f2 = 36.43 # try for chaining a 3x telescope setup with a second 3x telescope setup f0 = 150 f0_0 = (v_bk7-v_f2)*f0/v_bk7 f0_1 = -f0_0*v_bk7/v_f2 f0_actual = 1/(1/f0_0+1/f0_1) f1 = 60 # 1/f = 1/f0 + 1/f1 = 1/f0 - v2/(f0*v1) = (v1-v2)/(v1*f0) # f0 = (v1-v2)*f/v1 f1_0 = (v_bk7-v_f2)*f1/v_bk7 f1_1 = -f1_0*v_bk7/v_f2 f2 = 150 f3 = 50 f1_stacked = 2*f1 r0 = calc_curvature(n_lasf9, f0) r0_0 = calc_curvature(n_bk7, f0_0) r0_1 = calc_curvature(n_f2, f0_1) r1 = calc_curvature(n_lasf9, f1) r1_0 = calc_curvature(n_bk7, f1_0) r1_1 = calc_curvature(n_f2, f1_1) r2 = calc_curvature(n_lasf9, f2) r3 = calc_curvature(n_lasf9, f3) #sm.add_surface([r0_0, 2, 'N-BK7', 'Schott', 42/2]) #sm.add_surface([1e9, 2, 'N-F2', 'Schott', 42/2]) #sm.add_surface([-r0_1, 180+2*f1]) #sm.add_surface([-r0_1, 180+2*36.]) sm.add_surface([r1_0, 4, 'N-BK7', 'Schott', 16]) sm.add_surface([1e9, 2, 'N-F2', 'Schott', 16]) sm.add_surface([-r1_1, 30]) #sm.add_surface([1e9, 2, 'N-LASF9', 'Schott', 16]) #sm.add_surface([-r1, f2+f3]) #sm.add_surface([r2, 2, 'N-LASF9', 'Schott', 16]) #sm.add_surface([1e9, f2+f3]) #sm.add_surface([1e9, 2, 'N-LASF9', 'Schott', 16]) #sm.add_surface([-r3, f3])
In [54]:
opm.update_model() opm.seq_model.gaps[-1].thi = opm.optical_spec.parax_data.fod.bfl opm.update_model() layout_plt = plt.figure(FigureClass=InteractiveLayout, opt_model=opm, is_dark=isdark).plot()
Figure
In [55]:
pm.first_order_data()
efl 50.17 ffl -54.42 pp1 -4.251 bfl 42.68 ppk 7.488 f/# 3.135 m -5.017e-09 red -1.993e+08 obj_dist 1e+10 obj_ang 5 enp_dist -0 enp_radius 8 na obj 8e-10 n obj 1 img_dist 42.68 img_ht 4.389 exp_dist -3.569 exp_radius 7.375 na img -0.1575 n img 1 optical invariant 0.6999
In [56]:
abr_plt = plt.figure(FigureClass=RayFanFigure, opt_model=opm, data_type='Ray', scale_type=Fit.All_Same).plot()
Figure
In [57]:
spot_plt = plt.figure(FigureClass=SpotDiagramFigure, opt_model=opm, is_dark=isdark).plot()
Figure
In [58]:
layout_plt = plt.figure(FigureClass=InteractiveLayout, opt_model=opm, is_dark=isdark).plot()
Figure
In [59]:
def dump_dist(p, wi, ray_pkg, fld, wvl, foc): if ray_pkg is not None: image_pt = fld.ref_sphere[0] ray = ray_pkg[0] dist = foc / ray[-1][1][2] defocused_pt = ray[-1][0] + dist*ray[-1][1] t_abr = defocused_pt - image_pt return np.sqrt(np.sum(t_abr*t_abr)) def spot_rms(sm): return np.sqrt(np.mean(np.square(sm.trace_grid(dump_dist, 0, form='list', append_if_none=False)[0]), axis=1)) spot_rms(sm)
Out[59]:
array([0.71394997, 0.69072105, 0.67781734])
In [60]:
import rayoptics.optical.model_constants as mc old_gap = opm.seq_model.gaps[-1].thi offsets = np.linspace(-40, 40, 2000) opm.seq_model.gaps[-1].thi = opm.optical_spec.parax_data.fod.bfl opm.update_model() def dump_rays(p, wi, ray_pkg, fld, wvl, foc): if ray_pkg is not None: image_pt = fld.ref_sphere[0] ray = ray_pkg[mc.ray] v = ray[-1][mc.d][0:2] / ray[-1][mc.d][2] return [ray[-1][mc.p][0:2] - image_pt[0:2], v] vals, colors = sm.trace_grid(dump_rays, 0, form='list', append_if_none=False) v1, v2, v3 = vals v1_p = v1[:,0] v1_v = v1[:,1] v2_p = v2[:,0] v2_v = v2[:,1] v3_p = v3[:,0] v3_v = v3[:,1] v1_rms = np.zeros(offsets.size) v2_rms = np.zeros(offsets.size) v3_rms = np.zeros(offsets.size) for i in range(offsets.size): v1_rms[i] = np.sqrt(np.mean(np.square(v1_p+v1_v*offsets[i]))) v2_rms[i] = np.sqrt(np.mean(np.square(v2_p+v2_v*offsets[i]))) v3_rms[i] = np.sqrt(np.mean(np.square(v3_p+v3_v*offsets[i]))) opm.seq_model.gaps[-1].thi = old_gap opm.update_model() plt.figure() plt.plot(offsets, v1_rms, color=colors[0]) plt.plot(offsets, v2_rms, color=colors[1]) plt.plot(offsets, v3_rms, color=colors[2]) plt.show() min_o = offsets[np.argmin(0.25*v1_rms+0.50*v2_rms+0.25*v3_rms)] min_o
Figure
Out[60]:
-5.022511255627812
In [61]:
opm.seq_model.gaps[-1].thi = opm.optical_spec.parax_data.fod.bfl + min_o opm.update_model() spot_plt = plt.figure(FigureClass=SpotDiagramFigure, opt_model=opm, is_dark=isdark).plot() print(spot_rms(sm))
[0.2159279 0.21609438 0.21714886]
Figure
In [62]:
abr_plt = plt.figure(FigureClass=RayFanFigure, opt_model=opm, data_type='Ray', scale_type=Fit.All_Same).plot()
Figure
In [12]:
# let's try chaining the two lenses together and seeing how that looks # first let's wrap that focus calculation code into a function def dump_rays(p, wi, ray_pkg, fld, wvl, foc): if ray_pkg is not None: image_pt = fld.ref_sphere[0] ray = ray_pkg[mc.ray] v = ray[-1][mc.d][0:2] / ray[-1][mc.d][2] return [ray[-1][mc.p][0:2] - image_pt[0:2], v] def get_focus(sm, offset=False, weights=np.array([0.25, 0.5, 0.25])): offsets = np.linspace(-40, 40, 2000) vals, colors = sm.trace_grid(dump_rays, 0, form='list', append_if_none=False) rms = np.zeros((offsets.size, len(vals)), dtype=float) for i in range(offsets.size): for j in range(len(vals)): rms[i][j] = np.sqrt(np.mean(np.square(vals[j][:,0]+vals[j][:,1]*offsets[i]))) if offset: return offsets[np.argmin(np.sum(rms*weights, axis=1))] else: return sm.gaps[-1].thi + offsets[np.argmin(np.sum(rms*weights, axis=1))] get_focus(sm)
Out[12]:
37.675382106540546
In [150]:
opm2 = OpticalModel() sm2 = opm2['seq_model'] osp2 = opm2['optical_spec'] pm2 = opm2['parax_model'] osp2['pupil'] = PupilSpec(osp2, key=['object', 'pupil'], value=16) osp2['fov'] = FieldSpec(osp2, key=['object', 'angle'], value=1.5, flds=[0., 0.707, 1.], is_relative=True) osp2['wvls'] = WvlSpec([('F', 0.5), (587.5618, 1.0), ('C', 0.5)], ref_wl=1) opm2.radius_mode = True sm2.gaps[0].thi=1e10 sm2.add_surface([r0_0, 2, 'N-BK7', 'Schott', 42/2]) sm2.add_surface([1e9, 2, 'N-F2', 'Schott', 42/2]) sm2.add_surface([-r0_1, f0]) first_gap_idx = sm2.cur_surface opm2.update_model() sm2.gaps[-1].thi = get_focus(sm2) opm2.update_model() layout_plt = plt.figure(FigureClass=InteractiveLayout, opt_model=opm2, is_dark=isdark).plot()
Figure
In [151]:
#use the gap from sm sm2.gaps[-1].thi += sm.gaps[-1].thi sm2.add_surface([r1_1, 1, 'N-F2', 'Schott', 16]) sm2.add_surface([1e9, 2, 'N-BK7', 'Schott', 16]) sm2.add_surface([-r1_0, sm.gaps[-1].thi]) second_gap_idx = sm2.cur_surface opm2.update_model() layout_plt = plt.figure(FigureClass=InteractiveLayout, opt_model=opm2, is_dark=isdark).plot()
Figure
In [152]:
pm2.first_order_data()
efl 505.1 ffl 1173 pp1 1678 bfl -136.6 ppk 641.7 f/# 31.57 m -5.051e-08 red -1.98e+07 obj_dist 1e+10 obj_ang 1.5 enp_dist -0 enp_radius 8 na obj 8e-10 n obj 1 img_dist -136.6 img_ht 13.23 exp_dist -93.21 exp_radius 3.446 na img -0.01584 n img 1 optical invariant 0.2095
In [153]:
sm2.insert_surface_and_gap() cur = sm2.cur_surface sm2.ifcs[cur] = ThinLens(power=1/30.) sm2.gaps[cur].thi = 30. opm2.update_model() layout_plt = plt.figure(FigureClass=InteractiveLayout, opt_model=opm2, is_dark=isdark).plot()
Figure
In [154]:
spot_plt = plt.figure(FigureClass=SpotDiagramFigure, opt_model=opm2, is_dark=isdark).plot() print(spot_rms(sm2))
[0.51212369 0.14586092 0.10640832]
Figure
In [155]:
adjust = get_focus(sm2) sm2.gaps[-1].thi = adjust opm2.update_model() spot_plt = plt.figure(FigureClass=SpotDiagramFigure, opt_model=opm2, is_dark=isdark).plot() adjust, spot_rms(sm2)
Out[155]:
(32.26113056528264, array([0.39920801, 0.02495399, 0.26426542]))
Figure
In [156]:
abr_plt = plt.figure(FigureClass=RayFanFigure, opt_model=opm2, data_type='Ray', scale_type=Fit.All_Same).plot()
Figure
In [157]:
def test_gap(opm, sm, gap_idx, start, end, npoints=10, weights=np.array([0.25, 0.5, 0.25])): last_gap = sm.gaps[gap_idx].thi focus_gap = sm.gaps[-1].thi offsets = np.linspace(start, end, npoints) test_rms = np.zeros(offsets.size) for i in range(offsets.size): sm.gaps[gap_idx].thi = last_gap + offsets[i] opm.update_model() sm.gaps[-1].thi = get_focus(sm) opm.update_model() test_rms[i] = np.sum(spot_rms(sm)*weights) sm.gaps[gap_idx].thi = last_gap sm.gaps[-1].thi = focus_gap opm.update_model() return offsets, test_rms offsets, test_rms = test_gap(opm2, sm2, first_gap_idx, -10, 30) plt.figure() plt.plot(offsets, test_rms)
Out[157]:
[<matplotlib.lines.Line2D at 0x7fcfd7e0bf10>]
Figure
In [158]:
offsets, test_rms = test_gap(opm2, sm2, first_gap_idx, 15, 24, 30) plt.figure() plt.plot(offsets, test_rms)
Out[158]:
[<matplotlib.lines.Line2D at 0x7fcfd7e8b970>]
Figure
In [159]:
# turned off to see how optimizing the second gap affects the quality by itself #sm2.gaps[first_gap_idx].thi += offsets[np.argmin(test_rms)] #opm2.update_model() #offsets[np.argmin(test_rms)], np.min(test_rms)
In [160]:
offsets2, test_rms2 = test_gap(opm2, sm2, second_gap_idx, -10, 10) plt.figure() plt.plot(offsets2, test_rms2)
Out[160]:
[<matplotlib.lines.Line2D at 0x7fcfd7d14550>]
Figure
In [161]:
offsets2, test_rms2 = test_gap(opm2, sm2, second_gap_idx, -30, -10) plt.figure() plt.plot(offsets2, test_rms2)
Out[161]:
[<matplotlib.lines.Line2D at 0x7fcfd7d7a020>]
Figure
In [162]:
offsets2, test_rms2 = test_gap(opm2, sm2, second_gap_idx, -40, -30) plt.figure() plt.plot(offsets2, test_rms2)
Out[162]:
[<matplotlib.lines.Line2D at 0x7fcfd7de7700>]
Figure
In [163]:
# fuck how negative can it go? sm2.gaps[second_gap_idx].thi
Out[163]:
37.65537210153805
In [164]:
# let's place it at 2mm and see how that looks sm2.gaps[second_gap_idx].thi = 2 sm2.gaps[-1].thi = get_focus(sm2) opm2.update_model() spot_plt = plt.figure(FigureClass=SpotDiagramFigure, opt_model=opm2, is_dark=isdark).plot() spot_rms(sm2)
Out[164]:
array([0.38273603, 0.06067967, 0.16915498])
Figure
In [165]:
opm2.rebuild_from_seq() layout_plt = plt.figure(FigureClass=InteractiveLayout, opt_model=opm2, is_dark=isdark).plot()
Figure
In [166]:
# let's try messing with the first gap again offsets, test_rms = test_gap(opm2, sm2, first_gap_idx, -5, 5) plt.figure() plt.plot(offsets, test_rms)
Out[166]:
[<matplotlib.lines.Line2D at 0x7fcfd7a0a860>]
Figure
In [167]:
# looks like it's pretty close to optimal, guess we'll have to mess with the first lens # to optimize for this second one # to be continued in part 2, 4D multivariable optimization # probably gonna switch optics libraries too, # this ray-optics is good but kind of slow
In [ ]: