spider-bot/fw/nrf52/nrf5_sdk/components/ble/common/ble_advdata.c

839 lines
28 KiB
C

/**
* Copyright (c) 2012 - 2019, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "ble_advdata.h"
#include "ble_gap.h"
#include "ble_srv_common.h"
#include "sdk_common.h"
// NOTE: For now, Security Manager Out of Band Flags (OOB) are omitted from the advertising data.
// Types of LE Bluetooth Device Address AD type
#define AD_TYPE_BLE_DEVICE_ADDR_TYPE_PUBLIC 0UL
#define AD_TYPE_BLE_DEVICE_ADDR_TYPE_RANDOM 1UL
#define UUID16_SIZE 2 /**< Size of 16 bit UUID. */
#define UUID32_SIZE 4 /**< Size of 32 bit UUID. */
#define UUID128_SIZE 16 /**< Size of 128 bit UUID. */
#define N_AD_TYPES 2 /**< The number of Advertising data types to search for at a time. */
static ret_code_t ble_device_addr_encode(uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
ret_code_t err_code;
ble_gap_addr_t device_addr;
// Check for buffer overflow.
if (((*p_offset) + AD_TYPE_BLE_DEVICE_ADDR_SIZE) > max_size)
{
return NRF_ERROR_DATA_SIZE;
}
// Get BLE address.
err_code = sd_ble_gap_addr_get(&device_addr);
VERIFY_SUCCESS(err_code);
// Encode LE Bluetooth Device Address.
p_encoded_data[*p_offset] = (uint8_t)(AD_TYPE_FIELD_SIZE +
AD_TYPE_BLE_DEVICE_ADDR_DATA_SIZE);
*p_offset += AD_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_LE_BLUETOOTH_DEVICE_ADDRESS;
*p_offset += AD_TYPE_FIELD_SIZE;
memcpy(&p_encoded_data[*p_offset], &device_addr.addr[0], BLE_GAP_ADDR_LEN);
*p_offset += BLE_GAP_ADDR_LEN;
if (BLE_GAP_ADDR_TYPE_PUBLIC == device_addr.addr_type)
{
p_encoded_data[*p_offset] = AD_TYPE_BLE_DEVICE_ADDR_TYPE_PUBLIC;
}
else
{
p_encoded_data[*p_offset] = AD_TYPE_BLE_DEVICE_ADDR_TYPE_RANDOM;
}
*p_offset += AD_TYPE_BLE_DEVICE_ADDR_TYPE_SIZE;
return NRF_SUCCESS;
}
static ret_code_t name_encode(const ble_advdata_t * p_advdata,
uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
ret_code_t err_code;
uint16_t rem_adv_data_len;
uint16_t actual_length;
uint8_t adv_data_format;
// Validate parameters
if ((BLE_ADVDATA_SHORT_NAME == p_advdata->name_type) && (0 == p_advdata->short_name_len))
{
return NRF_ERROR_INVALID_PARAM;
}
// Check for buffer overflow.
if ( (((*p_offset) + AD_DATA_OFFSET) > max_size) ||
( (BLE_ADVDATA_SHORT_NAME == p_advdata->name_type) &&
(((*p_offset) + AD_DATA_OFFSET + p_advdata->short_name_len) > max_size)))
{
return NRF_ERROR_DATA_SIZE;
}
rem_adv_data_len = max_size - (*p_offset) - AD_DATA_OFFSET;
actual_length = rem_adv_data_len;
// Get GAP device name and length
err_code = sd_ble_gap_device_name_get(&p_encoded_data[(*p_offset) + AD_DATA_OFFSET],
&actual_length);
VERIFY_SUCCESS(err_code);
// Check if device intend to use short name and it can fit available data size.
// If the name is shorter than the preferred short name length then it is no longer
// a short name and is in fact the complete name of the device.
if (((p_advdata->name_type == BLE_ADVDATA_FULL_NAME) ||
(actual_length <= p_advdata->short_name_len)) &&
(actual_length <= rem_adv_data_len))
{
// Complete device name can fit, setting Complete Name in Adv Data.
adv_data_format = BLE_GAP_AD_TYPE_COMPLETE_LOCAL_NAME;
}
else
{
// Else short name needs to be used. Or application has requested use of short name.
adv_data_format = BLE_GAP_AD_TYPE_SHORT_LOCAL_NAME;
// If application has set a preference on the short name size, it needs to be considered,
// else fit what can be fit.
if ((BLE_ADVDATA_SHORT_NAME == p_advdata->name_type) &&
(p_advdata->short_name_len <= rem_adv_data_len))
{
// Short name fits available size.
actual_length = p_advdata->short_name_len;
}
// Else whatever can fit the data buffer will be packed.
else
{
actual_length = rem_adv_data_len;
}
}
// There is only 1 byte intended to encode length which is (actual_length + AD_TYPE_FIELD_SIZE)
if (actual_length > (0x00FF - AD_TYPE_FIELD_SIZE))
{
return NRF_ERROR_DATA_SIZE;
}
// Complete name field in encoded data.
p_encoded_data[*p_offset] = (uint8_t)(AD_TYPE_FIELD_SIZE + actual_length);
*p_offset += AD_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = adv_data_format;
*p_offset += AD_TYPE_FIELD_SIZE;
*p_offset += actual_length;
return NRF_SUCCESS;
}
static ret_code_t appearance_encode(uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
ret_code_t err_code;
uint16_t appearance;
// Check for buffer overflow.
if (((*p_offset) + AD_TYPE_APPEARANCE_SIZE) > max_size)
{
return NRF_ERROR_DATA_SIZE;
}
// Get GAP appearance field.
err_code = sd_ble_gap_appearance_get(&appearance);
VERIFY_SUCCESS(err_code);
// Encode Length, AD Type and Appearance.
p_encoded_data[*p_offset] = (uint8_t)(AD_TYPE_FIELD_SIZE + AD_TYPE_APPEARANCE_DATA_SIZE);
*p_offset += AD_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_APPEARANCE;
*p_offset += AD_TYPE_FIELD_SIZE;
*p_offset += uint16_encode(appearance, &p_encoded_data[*p_offset]);
return NRF_SUCCESS;
}
static ret_code_t flags_encode(int8_t flags,
uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
// Check for buffer overflow.
if (((*p_offset) + AD_TYPE_FLAGS_SIZE) > max_size)
{
return NRF_ERROR_DATA_SIZE;
}
// Encode flags.
p_encoded_data[*p_offset] = (uint8_t)(AD_TYPE_FIELD_SIZE + AD_TYPE_FLAGS_DATA_SIZE);
*p_offset += AD_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_FLAGS;
*p_offset += AD_TYPE_FIELD_SIZE;
p_encoded_data[*p_offset] = flags;
*p_offset += AD_TYPE_FLAGS_DATA_SIZE;
return NRF_SUCCESS;
}
static ret_code_t tx_power_level_encode(int8_t tx_power_level,
uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
// Check for buffer overflow.
if (((*p_offset) + AD_TYPE_TX_POWER_LEVEL_SIZE) > max_size)
{
return NRF_ERROR_DATA_SIZE;
}
// Encode TX Power Level.
p_encoded_data[*p_offset] = (uint8_t)(AD_TYPE_FIELD_SIZE +
AD_TYPE_TX_POWER_LEVEL_DATA_SIZE);
*p_offset += AD_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_TX_POWER_LEVEL;
*p_offset += AD_TYPE_FIELD_SIZE;
p_encoded_data[*p_offset] = tx_power_level;
*p_offset += AD_TYPE_TX_POWER_LEVEL_DATA_SIZE;
return NRF_SUCCESS;
}
static ret_code_t uuid_list_sized_encode(const ble_advdata_uuid_list_t * p_uuid_list,
uint8_t adv_type,
uint8_t uuid_size,
uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
int i;
bool is_heading_written = false;
uint16_t start_pos = *p_offset;
uint16_t length;
for (i = 0; i < p_uuid_list->uuid_cnt; i++)
{
ret_code_t err_code;
uint8_t encoded_size;
ble_uuid_t uuid = p_uuid_list->p_uuids[i];
// Find encoded uuid size.
err_code = sd_ble_uuid_encode(&uuid, &encoded_size, NULL);
VERIFY_SUCCESS(err_code);
// Check size.
if (encoded_size == uuid_size)
{
uint8_t heading_bytes = (is_heading_written) ? 0 : AD_DATA_OFFSET;
// Check for buffer overflow
if (((*p_offset) + encoded_size + heading_bytes) > max_size)
{
return NRF_ERROR_DATA_SIZE;
}
if (!is_heading_written)
{
// Write AD structure heading.
*p_offset += AD_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = adv_type;
*p_offset += AD_TYPE_FIELD_SIZE;
is_heading_written = true;
}
// Write UUID.
err_code = sd_ble_uuid_encode(&uuid, &encoded_size, &p_encoded_data[*p_offset]);
VERIFY_SUCCESS(err_code);
*p_offset += encoded_size;
}
}
if (is_heading_written)
{
// Write length.
length = (*p_offset) - (start_pos + AD_LENGTH_FIELD_SIZE);
// There is only 1 byte intended to encode length
if (length > 0x00FF)
{
return NRF_ERROR_DATA_SIZE;
}
p_encoded_data[start_pos] = (uint8_t)length;
}
return NRF_SUCCESS;
}
static ret_code_t uuid_list_encode(const ble_advdata_uuid_list_t * p_uuid_list,
uint8_t adv_type_16,
uint8_t adv_type_128,
uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
ret_code_t err_code;
// Encode 16 bit UUIDs.
err_code = uuid_list_sized_encode(p_uuid_list,
adv_type_16,
sizeof(uint16_le_t),
p_encoded_data,
p_offset,
max_size);
VERIFY_SUCCESS(err_code);
// Encode 128 bit UUIDs.
err_code = uuid_list_sized_encode(p_uuid_list,
adv_type_128,
sizeof(ble_uuid128_t),
p_encoded_data,
p_offset,
max_size);
VERIFY_SUCCESS(err_code);
return NRF_SUCCESS;
}
static ret_code_t conn_int_check(const ble_advdata_conn_int_t *p_conn_int)
{
// Check Minimum Connection Interval.
if ((p_conn_int->min_conn_interval < 0x0006) ||
(
(p_conn_int->min_conn_interval > 0x0c80) &&
(p_conn_int->min_conn_interval != 0xffff)
)
)
{
return NRF_ERROR_INVALID_PARAM;
}
// Check Maximum Connection Interval.
if ((p_conn_int->max_conn_interval < 0x0006) ||
(
(p_conn_int->max_conn_interval > 0x0c80) &&
(p_conn_int->max_conn_interval != 0xffff)
)
)
{
return NRF_ERROR_INVALID_PARAM;
}
// Make sure Minimum Connection Interval is not bigger than Maximum Connection Interval.
if ((p_conn_int->min_conn_interval != 0xffff) &&
(p_conn_int->max_conn_interval != 0xffff) &&
(p_conn_int->min_conn_interval > p_conn_int->max_conn_interval)
)
{
return NRF_ERROR_INVALID_PARAM;
}
return NRF_SUCCESS;
}
static ret_code_t conn_int_encode(const ble_advdata_conn_int_t * p_conn_int,
uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
ret_code_t err_code;
// Check for buffer overflow.
if (((*p_offset) + AD_TYPE_CONN_INT_SIZE) > max_size)
{
return NRF_ERROR_DATA_SIZE;
}
// Check parameters.
err_code = conn_int_check(p_conn_int);
VERIFY_SUCCESS(err_code);
// Encode Length and AD Type.
p_encoded_data[*p_offset] = (uint8_t)(AD_TYPE_FIELD_SIZE + AD_TYPE_CONN_INT_DATA_SIZE);
*p_offset += AD_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_SLAVE_CONNECTION_INTERVAL_RANGE;
*p_offset += AD_TYPE_FIELD_SIZE;
// Encode Minimum and Maximum Connection Intervals.
*p_offset += uint16_encode(p_conn_int->min_conn_interval, &p_encoded_data[*p_offset]);
*p_offset += uint16_encode(p_conn_int->max_conn_interval, &p_encoded_data[*p_offset]);
return NRF_SUCCESS;
}
static ret_code_t manuf_specific_data_encode(const ble_advdata_manuf_data_t * p_manuf_sp_data,
uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
uint32_t data_size = AD_TYPE_MANUF_SPEC_DATA_ID_SIZE + p_manuf_sp_data->data.size;
// Check for buffer overflow.
if (((*p_offset) + AD_DATA_OFFSET + data_size) > max_size)
{
return NRF_ERROR_DATA_SIZE;
}
// There is only 1 byte intended to encode length which is (data_size + AD_TYPE_FIELD_SIZE)
if (data_size > (0x00FF - AD_TYPE_FIELD_SIZE))
{
return NRF_ERROR_DATA_SIZE;
}
// Encode Length and AD Type.
p_encoded_data[*p_offset] = (uint8_t)(AD_TYPE_FIELD_SIZE + data_size);
*p_offset += AD_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_MANUFACTURER_SPECIFIC_DATA;
*p_offset += AD_TYPE_FIELD_SIZE;
// Encode Company Identifier.
*p_offset += uint16_encode(p_manuf_sp_data->company_identifier, &p_encoded_data[*p_offset]);
// Encode additional manufacturer specific data.
if (p_manuf_sp_data->data.size > 0)
{
if (p_manuf_sp_data->data.p_data == NULL)
{
return NRF_ERROR_INVALID_PARAM;
}
memcpy(&p_encoded_data[*p_offset], p_manuf_sp_data->data.p_data, p_manuf_sp_data->data.size);
*p_offset += p_manuf_sp_data->data.size;
}
return NRF_SUCCESS;
}
// Implemented only for 16-bit UUIDs
static ret_code_t service_data_encode(const ble_advdata_t * p_advdata,
uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
uint8_t i;
// Check parameter consistency.
if (p_advdata->p_service_data_array == NULL)
{
return NRF_ERROR_INVALID_PARAM;
}
for (i = 0; i < p_advdata->service_data_count; i++)
{
ble_advdata_service_data_t * p_service_data;
uint32_t data_size;
p_service_data = &p_advdata->p_service_data_array[i];
// For now implemented only for 16-bit UUIDs
data_size = AD_TYPE_SERV_DATA_16BIT_UUID_SIZE + p_service_data->data.size;
// There is only 1 byte intended to encode length which is (data_size + AD_TYPE_FIELD_SIZE)
if (data_size > (0x00FF - AD_TYPE_FIELD_SIZE))
{
return NRF_ERROR_DATA_SIZE;
}
// Encode Length and AD Type.
p_encoded_data[*p_offset] = (uint8_t)(AD_TYPE_FIELD_SIZE + data_size);
*p_offset += AD_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_SERVICE_DATA;
*p_offset += AD_TYPE_FIELD_SIZE;
// Encode service 16-bit UUID.
*p_offset += uint16_encode(p_service_data->service_uuid, &p_encoded_data[*p_offset]);
// Encode additional service data.
if (p_service_data->data.size > 0)
{
if (p_service_data->data.p_data == NULL)
{
return NRF_ERROR_INVALID_PARAM;
}
memcpy(&p_encoded_data[*p_offset], p_service_data->data.p_data, p_service_data->data.size);
*p_offset += p_service_data->data.size;
}
}
return NRF_SUCCESS;
}
ret_code_t ble_advdata_encode(ble_advdata_t const * const p_advdata,
uint8_t * const p_encoded_data,
uint16_t * const p_len)
{
ret_code_t err_code = NRF_SUCCESS;
uint16_t max_size = *p_len;
*p_len = 0;
// Encode LE Bluetooth Device Address
if (p_advdata->include_ble_device_addr)
{
err_code = ble_device_addr_encode(p_encoded_data, p_len, max_size);
VERIFY_SUCCESS(err_code);
}
// Encode appearance.
if (p_advdata->include_appearance)
{
err_code = appearance_encode(p_encoded_data, p_len, max_size);
VERIFY_SUCCESS(err_code);
}
//Encode Flags
if (p_advdata->flags != 0 )
{
err_code = flags_encode(p_advdata->flags, p_encoded_data, p_len, max_size);
VERIFY_SUCCESS(err_code);
}
// Encode TX power level.
if (p_advdata->p_tx_power_level != NULL)
{
err_code = tx_power_level_encode(*p_advdata->p_tx_power_level,
p_encoded_data,
p_len,
max_size);
VERIFY_SUCCESS(err_code);
}
// Encode 'more available' uuid list.
if (p_advdata->uuids_more_available.uuid_cnt > 0)
{
err_code = uuid_list_encode(&p_advdata->uuids_more_available,
BLE_GAP_AD_TYPE_16BIT_SERVICE_UUID_MORE_AVAILABLE,
BLE_GAP_AD_TYPE_128BIT_SERVICE_UUID_MORE_AVAILABLE,
p_encoded_data,
p_len,
max_size);
VERIFY_SUCCESS(err_code);
}
// Encode 'complete' uuid list.
if (p_advdata->uuids_complete.uuid_cnt > 0)
{
err_code = uuid_list_encode(&p_advdata->uuids_complete,
BLE_GAP_AD_TYPE_16BIT_SERVICE_UUID_COMPLETE,
BLE_GAP_AD_TYPE_128BIT_SERVICE_UUID_COMPLETE,
p_encoded_data,
p_len,
max_size);
VERIFY_SUCCESS(err_code);
}
// Encode 'solicited service' uuid list.
if (p_advdata->uuids_solicited.uuid_cnt > 0)
{
err_code = uuid_list_encode(&p_advdata->uuids_solicited,
BLE_GAP_AD_TYPE_SOLICITED_SERVICE_UUIDS_16BIT,
BLE_GAP_AD_TYPE_SOLICITED_SERVICE_UUIDS_128BIT,
p_encoded_data,
p_len,
max_size);
VERIFY_SUCCESS(err_code);
}
// Encode Slave Connection Interval Range.
if (p_advdata->p_slave_conn_int != NULL)
{
err_code = conn_int_encode(p_advdata->p_slave_conn_int, p_encoded_data, p_len, max_size);
VERIFY_SUCCESS(err_code);
}
// Encode Manufacturer Specific Data.
if (p_advdata->p_manuf_specific_data != NULL)
{
err_code = manuf_specific_data_encode(p_advdata->p_manuf_specific_data,
p_encoded_data,
p_len,
max_size);
VERIFY_SUCCESS(err_code);
}
// Encode Service Data.
if (p_advdata->service_data_count > 0)
{
err_code = service_data_encode(p_advdata, p_encoded_data, p_len, max_size);
VERIFY_SUCCESS(err_code);
}
// Encode name. WARNING: it is encoded last on purpose since too long device name is truncated.
if (p_advdata->name_type != BLE_ADVDATA_NO_NAME)
{
err_code = name_encode(p_advdata, p_encoded_data, p_len, max_size);
VERIFY_SUCCESS(err_code);
}
return err_code;
}
uint16_t ble_advdata_search(uint8_t const * p_encoded_data,
uint16_t data_len,
uint16_t * p_offset,
uint8_t ad_type)
{
if ((p_encoded_data == NULL) || (p_offset == NULL))
{
return 0;
}
uint16_t i = 0;
while (((i < *p_offset) || (p_encoded_data[i + 1] != ad_type)) && (i < data_len))
{
// Jump to next data.
i += (p_encoded_data[i] + 1);
}
if (i >= data_len)
{
return 0;
}
else
{
uint16_t offset = i + 2;
uint16_t len = p_encoded_data[i] - 1;
if ((offset + len) > data_len)
{
// Malformed. Extends beyond provided data.
return 0;
}
*p_offset = offset;
return len;
}
}
uint8_t * ble_advdata_parse(uint8_t * p_encoded_data,
uint16_t data_len,
uint8_t ad_type)
{
uint16_t offset = 0;
uint16_t len = ble_advdata_search(p_encoded_data, data_len, &offset, ad_type);
if (len == 0)
{
return NULL;
}
else
{
return &p_encoded_data[offset];
}
}
bool ble_advdata_name_find(uint8_t const * p_encoded_data,
uint16_t data_len,
char const * p_target_name)
{
uint16_t parsed_name_len;
uint8_t const * p_parsed_name;
uint16_t data_offset = 0;
if (p_target_name == NULL)
{
return false;
}
parsed_name_len = ble_advdata_search(p_encoded_data,
data_len,
&data_offset,
BLE_GAP_AD_TYPE_COMPLETE_LOCAL_NAME);
p_parsed_name = &p_encoded_data[data_offset];
if ( (data_offset != 0)
&& (parsed_name_len != 0)
&& (strlen(p_target_name) == parsed_name_len)
&& (memcmp(p_target_name, p_parsed_name, parsed_name_len) == 0))
{
return true;
}
return false;
}
bool ble_advdata_short_name_find(uint8_t const * p_encoded_data,
uint16_t data_len,
char const * p_target_name,
uint8_t const short_name_min_len)
{
uint16_t parsed_name_len;
uint8_t const * p_parsed_name;
uint16_t data_offset = 0;
if (p_target_name == NULL)
{
return false;
}
parsed_name_len = ble_advdata_search(p_encoded_data,
data_len,
&data_offset,
BLE_GAP_AD_TYPE_SHORT_LOCAL_NAME);
p_parsed_name = &p_encoded_data[data_offset];
if ( (data_offset != 0)
&& (parsed_name_len != 0)
&& (parsed_name_len >= short_name_min_len)
&& (parsed_name_len < strlen(p_target_name))
&& (memcmp(p_target_name, p_parsed_name, parsed_name_len) == 0))
{
return true;
}
return false;
}
bool ble_advdata_uuid_find(uint8_t const * p_encoded_data,
uint16_t data_len,
ble_uuid_t const * p_target_uuid)
{
ret_code_t err_code;
uint16_t data_offset = 0;
uint8_t raw_uuid_len = UUID128_SIZE;
uint8_t const * p_parsed_uuid;
uint16_t parsed_uuid_len = data_len;
uint8_t raw_uuid[UUID128_SIZE];
uint8_t ad_types[N_AD_TYPES];
err_code = sd_ble_uuid_encode(p_target_uuid, &raw_uuid_len, raw_uuid);
if ((p_encoded_data == NULL) || (err_code != NRF_SUCCESS))
{
// Invalid p_encoded_data or p_target_uuid.
return false;
}
switch (raw_uuid_len)
{
case UUID16_SIZE:
ad_types[0] = BLE_GAP_AD_TYPE_16BIT_SERVICE_UUID_COMPLETE;
ad_types[1] = BLE_GAP_AD_TYPE_16BIT_SERVICE_UUID_MORE_AVAILABLE;
break;
case UUID32_SIZE:
// Not currently supported by sd_ble_uuid_encode().
ad_types[0] = BLE_GAP_AD_TYPE_32BIT_SERVICE_UUID_COMPLETE;
ad_types[1] = BLE_GAP_AD_TYPE_32BIT_SERVICE_UUID_MORE_AVAILABLE;
break;
case UUID128_SIZE:
ad_types[0] = BLE_GAP_AD_TYPE_128BIT_SERVICE_UUID_COMPLETE;
ad_types[1] = BLE_GAP_AD_TYPE_128BIT_SERVICE_UUID_MORE_AVAILABLE;
break;
default:
return false;
}
for (uint8_t i = 0; (i < N_AD_TYPES) && (data_offset == 0); i++)
{
parsed_uuid_len = ble_advdata_search(p_encoded_data, data_len, &data_offset, ad_types[i]);
}
if (data_offset == 0)
{
// Could not find any relevant UUIDs in the encoded data.
return false;
}
p_parsed_uuid = &p_encoded_data[data_offset];
// Verify if any UUID matches the given UUID.
for (uint16_t list_offset = 0; list_offset < parsed_uuid_len; list_offset += raw_uuid_len)
{
if (memcmp(&p_parsed_uuid[list_offset], raw_uuid, raw_uuid_len) == 0)
{
return true;
}
}
// Could not find the UUID among the encoded data.
return false;
}
bool ble_advdata_appearance_find(uint8_t const * p_encoded_data,
uint16_t data_len,
uint16_t const * p_target_appearance)
{
uint16_t data_offset = 0;
uint8_t appearance_len;
uint16_t decoded_appearance;
appearance_len = ble_advdata_search(p_encoded_data, data_len, &data_offset, BLE_GAP_AD_TYPE_APPEARANCE);
if ( (data_offset == 0)
|| (p_target_appearance == NULL)
|| (appearance_len == 0))
{
// Could not find any Appearance in the encoded data, or invalid p_target_appearance.
return false;
}
decoded_appearance = uint16_decode(&p_encoded_data[data_offset]);
if (decoded_appearance == *p_target_appearance)
{
return true;
}
// Could not find the appearance among the encoded data.
return false;
}