/**
 * Copyright (c) 2012 - 2019, Nordic Semiconductor ASA
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 *
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 *
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 *
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 *
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */
#include "ble_advdata.h"
#include "ble_gap.h"
#include "ble_srv_common.h"
#include "sdk_common.h"

// NOTE: For now, Security Manager Out of Band Flags (OOB) are omitted from the advertising data.


// Types of LE Bluetooth Device Address AD type
#define AD_TYPE_BLE_DEVICE_ADDR_TYPE_PUBLIC 0UL
#define AD_TYPE_BLE_DEVICE_ADDR_TYPE_RANDOM 1UL

#define UUID16_SIZE     2   /**< Size of 16 bit UUID. */
#define UUID32_SIZE     4   /**< Size of 32 bit UUID. */
#define UUID128_SIZE    16  /**< Size of 128 bit UUID. */

#define N_AD_TYPES      2   /**< The number of Advertising data types to search for at a time. */


static ret_code_t ble_device_addr_encode(uint8_t  * p_encoded_data,
                                         uint16_t * p_offset,
                                         uint16_t   max_size)
{
    ret_code_t     err_code;
    ble_gap_addr_t device_addr;

    // Check for buffer overflow.
    if (((*p_offset) + AD_TYPE_BLE_DEVICE_ADDR_SIZE) > max_size)
    {
        return NRF_ERROR_DATA_SIZE;
    }

    // Get BLE address.
    err_code = sd_ble_gap_addr_get(&device_addr);
    VERIFY_SUCCESS(err_code);

    // Encode LE Bluetooth Device Address.
    p_encoded_data[*p_offset]  = (uint8_t)(AD_TYPE_FIELD_SIZE +
                                               AD_TYPE_BLE_DEVICE_ADDR_DATA_SIZE);
    *p_offset                 += AD_LENGTH_FIELD_SIZE;
    p_encoded_data[*p_offset]  = BLE_GAP_AD_TYPE_LE_BLUETOOTH_DEVICE_ADDRESS;
    *p_offset                 += AD_TYPE_FIELD_SIZE;
    memcpy(&p_encoded_data[*p_offset], &device_addr.addr[0], BLE_GAP_ADDR_LEN);
    *p_offset                 += BLE_GAP_ADDR_LEN;
    if (BLE_GAP_ADDR_TYPE_PUBLIC == device_addr.addr_type)
    {
        p_encoded_data[*p_offset] = AD_TYPE_BLE_DEVICE_ADDR_TYPE_PUBLIC;
    }
    else
    {
        p_encoded_data[*p_offset] = AD_TYPE_BLE_DEVICE_ADDR_TYPE_RANDOM;
    }
    *p_offset += AD_TYPE_BLE_DEVICE_ADDR_TYPE_SIZE;

    return NRF_SUCCESS;
}

static ret_code_t name_encode(const ble_advdata_t * p_advdata,
                              uint8_t             * p_encoded_data,
                              uint16_t            * p_offset,
                              uint16_t              max_size)
{
    ret_code_t err_code;
    uint16_t   rem_adv_data_len;
    uint16_t   actual_length;
    uint8_t    adv_data_format;


    // Validate parameters
    if ((BLE_ADVDATA_SHORT_NAME == p_advdata->name_type) && (0 == p_advdata->short_name_len))
    {
        return NRF_ERROR_INVALID_PARAM;
    }

    // Check for buffer overflow.
    if ( (((*p_offset) + AD_DATA_OFFSET) > max_size) ||
         ( (BLE_ADVDATA_SHORT_NAME == p_advdata->name_type) &&
           (((*p_offset) + AD_DATA_OFFSET + p_advdata->short_name_len) > max_size)))
    {
        return NRF_ERROR_DATA_SIZE;
    }

    rem_adv_data_len = max_size - (*p_offset) - AD_DATA_OFFSET;
    actual_length    = rem_adv_data_len;

    // Get GAP device name and length
    err_code = sd_ble_gap_device_name_get(&p_encoded_data[(*p_offset) + AD_DATA_OFFSET],
                                          &actual_length);
    VERIFY_SUCCESS(err_code);

    // Check if device intend to use short name and it can fit available data size.
    // If the name is shorter than the preferred short name length then it is no longer 
    // a short name and is in fact the complete name of the device.
    if (((p_advdata->name_type == BLE_ADVDATA_FULL_NAME) || 
        (actual_length <= p_advdata->short_name_len)) && 
        (actual_length <= rem_adv_data_len))
    {
        // Complete device name can fit, setting Complete Name in Adv Data.
        adv_data_format = BLE_GAP_AD_TYPE_COMPLETE_LOCAL_NAME;
    }
    else
    {
        // Else short name needs to be used. Or application has requested use of short name.
        adv_data_format = BLE_GAP_AD_TYPE_SHORT_LOCAL_NAME;

        // If application has set a preference on the short name size, it needs to be considered,
        // else fit what can be fit.
        if ((BLE_ADVDATA_SHORT_NAME == p_advdata->name_type) &&
                (p_advdata->short_name_len <= rem_adv_data_len))
        {
            // Short name fits available size.
            actual_length = p_advdata->short_name_len;
        }
        // Else whatever can fit the data buffer will be packed.
        else
        {
            actual_length = rem_adv_data_len;
        }
    }

    // There is only 1 byte intended to encode length which is (actual_length + AD_TYPE_FIELD_SIZE)
    if (actual_length > (0x00FF - AD_TYPE_FIELD_SIZE))
    {
        return NRF_ERROR_DATA_SIZE;
    }

    // Complete name field in encoded data.
    p_encoded_data[*p_offset]  = (uint8_t)(AD_TYPE_FIELD_SIZE + actual_length);
    *p_offset                 += AD_LENGTH_FIELD_SIZE;
    p_encoded_data[*p_offset]  = adv_data_format;
    *p_offset                 += AD_TYPE_FIELD_SIZE;
    *p_offset                 += actual_length;

    return NRF_SUCCESS;
}


static ret_code_t appearance_encode(uint8_t  * p_encoded_data,
                                    uint16_t * p_offset,
                                    uint16_t   max_size)
{
    ret_code_t err_code;
    uint16_t   appearance;

    // Check for buffer overflow.
    if (((*p_offset) + AD_TYPE_APPEARANCE_SIZE) > max_size)
    {
        return NRF_ERROR_DATA_SIZE;
    }

    // Get GAP appearance field.
    err_code = sd_ble_gap_appearance_get(&appearance);
    VERIFY_SUCCESS(err_code);

    // Encode Length, AD Type and Appearance.
    p_encoded_data[*p_offset]  = (uint8_t)(AD_TYPE_FIELD_SIZE + AD_TYPE_APPEARANCE_DATA_SIZE);
    *p_offset                 += AD_LENGTH_FIELD_SIZE;
    p_encoded_data[*p_offset]  = BLE_GAP_AD_TYPE_APPEARANCE;
    *p_offset                 += AD_TYPE_FIELD_SIZE;
    *p_offset                 += uint16_encode(appearance, &p_encoded_data[*p_offset]);

    return NRF_SUCCESS;
}

static ret_code_t flags_encode(int8_t     flags,
                               uint8_t  * p_encoded_data,
                               uint16_t * p_offset,
                               uint16_t   max_size)
{
    // Check for buffer overflow.
    if (((*p_offset) + AD_TYPE_FLAGS_SIZE) > max_size)
    {
        return NRF_ERROR_DATA_SIZE;
    }

    // Encode flags.
    p_encoded_data[*p_offset]  = (uint8_t)(AD_TYPE_FIELD_SIZE + AD_TYPE_FLAGS_DATA_SIZE);
    *p_offset                 += AD_LENGTH_FIELD_SIZE;
    p_encoded_data[*p_offset]  = BLE_GAP_AD_TYPE_FLAGS;
    *p_offset                 += AD_TYPE_FIELD_SIZE;
    p_encoded_data[*p_offset]  = flags;
    *p_offset                 += AD_TYPE_FLAGS_DATA_SIZE;

    return NRF_SUCCESS;
}

static ret_code_t tx_power_level_encode(int8_t     tx_power_level,
                                        uint8_t  * p_encoded_data,
                                        uint16_t * p_offset,
                                        uint16_t   max_size)
{
    // Check for buffer overflow.
    if (((*p_offset) + AD_TYPE_TX_POWER_LEVEL_SIZE) > max_size)
    {
        return NRF_ERROR_DATA_SIZE;
    }

    // Encode TX Power Level.
    p_encoded_data[*p_offset]  = (uint8_t)(AD_TYPE_FIELD_SIZE +
                                                  AD_TYPE_TX_POWER_LEVEL_DATA_SIZE);
    *p_offset                 += AD_LENGTH_FIELD_SIZE;
    p_encoded_data[*p_offset]  = BLE_GAP_AD_TYPE_TX_POWER_LEVEL;
    *p_offset                 += AD_TYPE_FIELD_SIZE;
    p_encoded_data[*p_offset]  = tx_power_level;
    *p_offset                 += AD_TYPE_TX_POWER_LEVEL_DATA_SIZE;

    return NRF_SUCCESS;
}


static ret_code_t uuid_list_sized_encode(const ble_advdata_uuid_list_t * p_uuid_list,
                                         uint8_t                         adv_type,
                                         uint8_t                         uuid_size,
                                         uint8_t                       * p_encoded_data,
                                         uint16_t                      * p_offset,
                                         uint16_t                        max_size)
{
    int      i;
    bool     is_heading_written = false;
    uint16_t start_pos          = *p_offset;
    uint16_t length;

    for (i = 0; i < p_uuid_list->uuid_cnt; i++)
    {
        ret_code_t err_code;
        uint8_t    encoded_size;
        ble_uuid_t uuid = p_uuid_list->p_uuids[i];

        // Find encoded uuid size.
        err_code = sd_ble_uuid_encode(&uuid, &encoded_size, NULL);
        VERIFY_SUCCESS(err_code);

        // Check size.
        if (encoded_size == uuid_size)
        {
            uint8_t heading_bytes = (is_heading_written) ? 0 : AD_DATA_OFFSET;

            // Check for buffer overflow
            if (((*p_offset) + encoded_size + heading_bytes) > max_size)
            {
                return NRF_ERROR_DATA_SIZE;
            }

            if (!is_heading_written)
            {
                // Write AD structure heading.
                *p_offset                 += AD_LENGTH_FIELD_SIZE;
                p_encoded_data[*p_offset]  = adv_type;
                *p_offset                 += AD_TYPE_FIELD_SIZE;
                is_heading_written         = true;
            }

            // Write UUID.
            err_code = sd_ble_uuid_encode(&uuid, &encoded_size, &p_encoded_data[*p_offset]);
            VERIFY_SUCCESS(err_code);
            *p_offset += encoded_size;
        }
    }

    if (is_heading_written)
    {
        // Write length.
        length = (*p_offset) - (start_pos + AD_LENGTH_FIELD_SIZE);
        // There is only 1 byte intended to encode length
        if (length > 0x00FF)
        {
            return NRF_ERROR_DATA_SIZE;
        }
        p_encoded_data[start_pos] = (uint8_t)length;
    }

    return NRF_SUCCESS;
}


static ret_code_t uuid_list_encode(const ble_advdata_uuid_list_t * p_uuid_list,
                                   uint8_t                         adv_type_16,
                                   uint8_t                         adv_type_128,
                                   uint8_t                       * p_encoded_data,
                                   uint16_t                      * p_offset,
                                   uint16_t                        max_size)
{
    ret_code_t err_code;

    // Encode 16 bit UUIDs.
    err_code = uuid_list_sized_encode(p_uuid_list,
                                      adv_type_16,
                                      sizeof(uint16_le_t),
                                      p_encoded_data,
                                      p_offset,
                                      max_size);
    VERIFY_SUCCESS(err_code);

    // Encode 128 bit UUIDs.
    err_code = uuid_list_sized_encode(p_uuid_list,
                                      adv_type_128,
                                      sizeof(ble_uuid128_t),
                                      p_encoded_data,
                                      p_offset,
                                      max_size);
    VERIFY_SUCCESS(err_code);

    return NRF_SUCCESS;
}


static ret_code_t conn_int_check(const ble_advdata_conn_int_t *p_conn_int)
{
    // Check Minimum Connection Interval.
    if ((p_conn_int->min_conn_interval < 0x0006) ||
        (
            (p_conn_int->min_conn_interval > 0x0c80) &&
            (p_conn_int->min_conn_interval != 0xffff)
        )
       )
    {
        return NRF_ERROR_INVALID_PARAM;
    }

    // Check Maximum Connection Interval.
    if ((p_conn_int->max_conn_interval < 0x0006) ||
        (
            (p_conn_int->max_conn_interval > 0x0c80) &&
            (p_conn_int->max_conn_interval != 0xffff)
        )
       )
    {
        return NRF_ERROR_INVALID_PARAM;
    }

    // Make sure Minimum Connection Interval is not bigger than Maximum Connection Interval.
    if ((p_conn_int->min_conn_interval != 0xffff) &&
        (p_conn_int->max_conn_interval != 0xffff) &&
        (p_conn_int->min_conn_interval > p_conn_int->max_conn_interval)
        )
    {
        return NRF_ERROR_INVALID_PARAM;
    }

    return NRF_SUCCESS;
}


static ret_code_t conn_int_encode(const ble_advdata_conn_int_t * p_conn_int,
                                  uint8_t                      * p_encoded_data,
                                  uint16_t                     * p_offset,
                                  uint16_t                       max_size)
{
    ret_code_t err_code;

    // Check for buffer overflow.
    if (((*p_offset) + AD_TYPE_CONN_INT_SIZE) > max_size)
    {
        return NRF_ERROR_DATA_SIZE;
    }

    // Check parameters.
    err_code = conn_int_check(p_conn_int);
    VERIFY_SUCCESS(err_code);

    // Encode Length and AD Type.
    p_encoded_data[*p_offset]  = (uint8_t)(AD_TYPE_FIELD_SIZE + AD_TYPE_CONN_INT_DATA_SIZE);
    *p_offset                 += AD_LENGTH_FIELD_SIZE;
    p_encoded_data[*p_offset]  = BLE_GAP_AD_TYPE_SLAVE_CONNECTION_INTERVAL_RANGE;
    *p_offset                 += AD_TYPE_FIELD_SIZE;

    // Encode Minimum and Maximum Connection Intervals.
    *p_offset += uint16_encode(p_conn_int->min_conn_interval, &p_encoded_data[*p_offset]);
    *p_offset += uint16_encode(p_conn_int->max_conn_interval, &p_encoded_data[*p_offset]);

    return NRF_SUCCESS;
}


static ret_code_t manuf_specific_data_encode(const ble_advdata_manuf_data_t * p_manuf_sp_data,
                                             uint8_t                        * p_encoded_data,
                                             uint16_t                       * p_offset,
                                             uint16_t                         max_size)
{
    uint32_t data_size = AD_TYPE_MANUF_SPEC_DATA_ID_SIZE + p_manuf_sp_data->data.size;

    // Check for buffer overflow.
    if (((*p_offset) + AD_DATA_OFFSET + data_size) > max_size)
    {
        return NRF_ERROR_DATA_SIZE;
    }

    // There is only 1 byte intended to encode length which is (data_size + AD_TYPE_FIELD_SIZE)
    if (data_size > (0x00FF - AD_TYPE_FIELD_SIZE))
    {
        return NRF_ERROR_DATA_SIZE;
    }

    // Encode Length and AD Type.
    p_encoded_data[*p_offset]  = (uint8_t)(AD_TYPE_FIELD_SIZE + data_size);
    *p_offset                 += AD_LENGTH_FIELD_SIZE;
    p_encoded_data[*p_offset]  = BLE_GAP_AD_TYPE_MANUFACTURER_SPECIFIC_DATA;
    *p_offset                 += AD_TYPE_FIELD_SIZE;

    // Encode Company Identifier.
    *p_offset += uint16_encode(p_manuf_sp_data->company_identifier, &p_encoded_data[*p_offset]);

    // Encode additional manufacturer specific data.
    if (p_manuf_sp_data->data.size > 0)
    {
        if (p_manuf_sp_data->data.p_data == NULL)
        {
            return NRF_ERROR_INVALID_PARAM;
        }
        memcpy(&p_encoded_data[*p_offset], p_manuf_sp_data->data.p_data, p_manuf_sp_data->data.size);
        *p_offset += p_manuf_sp_data->data.size;
    }

    return NRF_SUCCESS;
}

// Implemented only for 16-bit UUIDs
static ret_code_t service_data_encode(const ble_advdata_t * p_advdata,
                                      uint8_t             * p_encoded_data,
                                      uint16_t            * p_offset,
                                      uint16_t              max_size)
{
    uint8_t i;

    // Check parameter consistency.
    if (p_advdata->p_service_data_array == NULL)
    {
        return NRF_ERROR_INVALID_PARAM;
    }

    for (i = 0; i < p_advdata->service_data_count; i++)
    {
        ble_advdata_service_data_t * p_service_data;
        uint32_t                     data_size;

        p_service_data = &p_advdata->p_service_data_array[i];
        // For now implemented only for 16-bit UUIDs
        data_size      = AD_TYPE_SERV_DATA_16BIT_UUID_SIZE + p_service_data->data.size;

        // There is only 1 byte intended to encode length which is (data_size + AD_TYPE_FIELD_SIZE)
        if (data_size > (0x00FF - AD_TYPE_FIELD_SIZE))
        {
            return NRF_ERROR_DATA_SIZE;
        }

        // Encode Length and AD Type.
        p_encoded_data[*p_offset]  = (uint8_t)(AD_TYPE_FIELD_SIZE + data_size);
        *p_offset                 += AD_LENGTH_FIELD_SIZE;
        p_encoded_data[*p_offset]  = BLE_GAP_AD_TYPE_SERVICE_DATA;
        *p_offset                 += AD_TYPE_FIELD_SIZE;

        // Encode service 16-bit UUID.
        *p_offset += uint16_encode(p_service_data->service_uuid, &p_encoded_data[*p_offset]);

        // Encode additional service data.
        if (p_service_data->data.size > 0)
        {
            if (p_service_data->data.p_data == NULL)
            {
                return NRF_ERROR_INVALID_PARAM;
            }
            memcpy(&p_encoded_data[*p_offset], p_service_data->data.p_data, p_service_data->data.size);
            *p_offset += p_service_data->data.size;
        }
    }

    return NRF_SUCCESS;
}

ret_code_t ble_advdata_encode(ble_advdata_t const * const p_advdata,
                              uint8_t             * const p_encoded_data,
                              uint16_t            * const p_len)
{
    ret_code_t err_code = NRF_SUCCESS;
    uint16_t   max_size = *p_len;
    *p_len = 0;

    // Encode LE Bluetooth Device Address
    if (p_advdata->include_ble_device_addr)
    {
        err_code = ble_device_addr_encode(p_encoded_data, p_len, max_size);
        VERIFY_SUCCESS(err_code);
    }

    // Encode appearance.
    if (p_advdata->include_appearance)
    {
        err_code = appearance_encode(p_encoded_data, p_len, max_size);
        VERIFY_SUCCESS(err_code);
    }

    //Encode Flags
    if (p_advdata->flags != 0 )
    {
        err_code = flags_encode(p_advdata->flags, p_encoded_data, p_len, max_size);
        VERIFY_SUCCESS(err_code);
    }

    // Encode TX power level.
    if (p_advdata->p_tx_power_level != NULL)
    {
        err_code = tx_power_level_encode(*p_advdata->p_tx_power_level,
                                         p_encoded_data,
                                         p_len,
                                         max_size);
        VERIFY_SUCCESS(err_code);
    }

    // Encode 'more available' uuid list.
    if (p_advdata->uuids_more_available.uuid_cnt > 0)
    {
        err_code = uuid_list_encode(&p_advdata->uuids_more_available,
                                    BLE_GAP_AD_TYPE_16BIT_SERVICE_UUID_MORE_AVAILABLE,
                                    BLE_GAP_AD_TYPE_128BIT_SERVICE_UUID_MORE_AVAILABLE,
                                    p_encoded_data,
                                    p_len,
                                    max_size);
        VERIFY_SUCCESS(err_code);
    }

    // Encode 'complete' uuid list.
    if (p_advdata->uuids_complete.uuid_cnt > 0)
    {
        err_code = uuid_list_encode(&p_advdata->uuids_complete,
                                    BLE_GAP_AD_TYPE_16BIT_SERVICE_UUID_COMPLETE,
                                    BLE_GAP_AD_TYPE_128BIT_SERVICE_UUID_COMPLETE,
                                    p_encoded_data,
                                    p_len,
                                    max_size);
        VERIFY_SUCCESS(err_code);
    }

    // Encode 'solicited service' uuid list.
    if (p_advdata->uuids_solicited.uuid_cnt > 0)
    {
        err_code = uuid_list_encode(&p_advdata->uuids_solicited,
                                    BLE_GAP_AD_TYPE_SOLICITED_SERVICE_UUIDS_16BIT,
                                    BLE_GAP_AD_TYPE_SOLICITED_SERVICE_UUIDS_128BIT,
                                    p_encoded_data,
                                    p_len,
                                    max_size);
        VERIFY_SUCCESS(err_code);
    }

    // Encode Slave Connection Interval Range.
    if (p_advdata->p_slave_conn_int != NULL)
    {
        err_code = conn_int_encode(p_advdata->p_slave_conn_int, p_encoded_data, p_len, max_size);
        VERIFY_SUCCESS(err_code);
    }

    // Encode Manufacturer Specific Data.
    if (p_advdata->p_manuf_specific_data != NULL)
    {
        err_code = manuf_specific_data_encode(p_advdata->p_manuf_specific_data,
                                              p_encoded_data,
                                              p_len,
                                              max_size);
        VERIFY_SUCCESS(err_code);
    }

    // Encode Service Data.
    if (p_advdata->service_data_count > 0)
    {
        err_code = service_data_encode(p_advdata, p_encoded_data, p_len, max_size);
        VERIFY_SUCCESS(err_code);
    }

    // Encode name. WARNING: it is encoded last on purpose since too long device name is truncated.
    if (p_advdata->name_type != BLE_ADVDATA_NO_NAME)
    {
        err_code = name_encode(p_advdata, p_encoded_data, p_len, max_size);
        VERIFY_SUCCESS(err_code);
    }

    return err_code;
}


uint16_t ble_advdata_search(uint8_t const * p_encoded_data,
                            uint16_t        data_len,
                            uint16_t      * p_offset,
                            uint8_t         ad_type)
{
    if ((p_encoded_data == NULL) || (p_offset == NULL))
    {
        return 0;
    }

    uint16_t i = 0;

    while (((i < *p_offset) || (p_encoded_data[i + 1] != ad_type)) && (i < data_len))
    {
        // Jump to next data.
        i += (p_encoded_data[i] + 1);
    }

    if (i >= data_len)
    {
        return 0;
    }
    else
    {
        uint16_t offset = i + 2;
        uint16_t len    = p_encoded_data[i] - 1;
        if ((offset + len) > data_len)
        {
            // Malformed. Extends beyond provided data.
            return 0;
        }
        *p_offset = offset;
        return len;
    }
}


uint8_t * ble_advdata_parse(uint8_t  * p_encoded_data,
                            uint16_t   data_len,
                            uint8_t    ad_type)
{
    uint16_t offset = 0;
    uint16_t len    = ble_advdata_search(p_encoded_data, data_len, &offset, ad_type);

    if (len == 0)
    {
        return NULL;
    }
    else
    {
        return &p_encoded_data[offset];
    }
}


bool ble_advdata_name_find(uint8_t const * p_encoded_data,
                           uint16_t        data_len,
                           char    const * p_target_name)
{
    uint16_t        parsed_name_len;
    uint8_t const * p_parsed_name;
    uint16_t        data_offset          = 0;

    if (p_target_name == NULL)
    {
        return false;
    }


    parsed_name_len = ble_advdata_search(p_encoded_data,
                                         data_len,
                                         &data_offset,
                                         BLE_GAP_AD_TYPE_COMPLETE_LOCAL_NAME);

    p_parsed_name = &p_encoded_data[data_offset];

    if (   (data_offset != 0)
        && (parsed_name_len != 0)
        && (strlen(p_target_name) == parsed_name_len)
        && (memcmp(p_target_name, p_parsed_name, parsed_name_len) == 0))
    {
        return true;
    }

    return false;
}


bool ble_advdata_short_name_find(uint8_t const * p_encoded_data,
                                 uint16_t        data_len,
                                 char    const * p_target_name,
                                 uint8_t const   short_name_min_len)
{
    uint16_t        parsed_name_len;
    uint8_t const * p_parsed_name;
    uint16_t        data_offset          = 0;

    if (p_target_name == NULL)
    {
        return false;
    }

    parsed_name_len = ble_advdata_search(p_encoded_data,
                                         data_len,
                                         &data_offset,
                                         BLE_GAP_AD_TYPE_SHORT_LOCAL_NAME);

    p_parsed_name = &p_encoded_data[data_offset];

    if (   (data_offset != 0)
        && (parsed_name_len != 0)
        && (parsed_name_len >= short_name_min_len)
        && (parsed_name_len < strlen(p_target_name))
        && (memcmp(p_target_name, p_parsed_name, parsed_name_len) == 0))
    {
        return true;
    }

    return false;
}


bool ble_advdata_uuid_find(uint8_t    const * p_encoded_data,
                           uint16_t           data_len,
                           ble_uuid_t const * p_target_uuid)
{

    ret_code_t      err_code;
    uint16_t        data_offset = 0;
    uint8_t         raw_uuid_len    = UUID128_SIZE;
    uint8_t const * p_parsed_uuid;
    uint16_t        parsed_uuid_len = data_len;
    uint8_t         raw_uuid[UUID128_SIZE];
    uint8_t         ad_types[N_AD_TYPES];

    err_code = sd_ble_uuid_encode(p_target_uuid, &raw_uuid_len, raw_uuid);

    if ((p_encoded_data == NULL) || (err_code != NRF_SUCCESS))
    {
        // Invalid p_encoded_data or p_target_uuid.
        return false;
    }

    switch (raw_uuid_len)
    {
        case UUID16_SIZE:
            ad_types[0] = BLE_GAP_AD_TYPE_16BIT_SERVICE_UUID_COMPLETE;
            ad_types[1] = BLE_GAP_AD_TYPE_16BIT_SERVICE_UUID_MORE_AVAILABLE;
            break;

        case UUID32_SIZE:
            // Not currently supported by sd_ble_uuid_encode().
            ad_types[0] = BLE_GAP_AD_TYPE_32BIT_SERVICE_UUID_COMPLETE;
            ad_types[1] = BLE_GAP_AD_TYPE_32BIT_SERVICE_UUID_MORE_AVAILABLE;
            break;

        case UUID128_SIZE:
            ad_types[0] = BLE_GAP_AD_TYPE_128BIT_SERVICE_UUID_COMPLETE;
            ad_types[1] = BLE_GAP_AD_TYPE_128BIT_SERVICE_UUID_MORE_AVAILABLE;
            break;

        default:
            return false;
    }

    for (uint8_t i = 0; (i < N_AD_TYPES) && (data_offset == 0); i++)
    {
        parsed_uuid_len = ble_advdata_search(p_encoded_data, data_len, &data_offset, ad_types[i]);
    }

    if (data_offset == 0)
    {
        // Could not find any relevant UUIDs in the encoded data.
        return false;
    }

    p_parsed_uuid = &p_encoded_data[data_offset];

    // Verify if any UUID matches the given UUID.
    for (uint16_t list_offset = 0; list_offset < parsed_uuid_len; list_offset += raw_uuid_len)
    {
        if (memcmp(&p_parsed_uuid[list_offset], raw_uuid, raw_uuid_len) == 0)
        {
            return true;
        }
    }

    // Could not find the UUID among the encoded data.
    return false;
}


bool ble_advdata_appearance_find(uint8_t  const * p_encoded_data,
                                 uint16_t         data_len,
                                 uint16_t const * p_target_appearance)
{
    uint16_t        data_offset = 0;
    uint8_t         appearance_len;
    uint16_t        decoded_appearance;

    appearance_len = ble_advdata_search(p_encoded_data, data_len, &data_offset, BLE_GAP_AD_TYPE_APPEARANCE);

    if (   (data_offset == 0)
        || (p_target_appearance == NULL)
        || (appearance_len == 0))
    {
        // Could not find any Appearance in the encoded data, or invalid p_target_appearance.
        return false;
    }

    decoded_appearance = uint16_decode(&p_encoded_data[data_offset]);

    if (decoded_appearance == *p_target_appearance)
    {
        return true;
    }

    // Could not find the appearance among the encoded data.
    return false;
}