spider-bot/fw/nrf52/nrf5_sdk/components/iot/coap/coap_message.c

805 lines
25 KiB
C

/**
* Copyright (c) 2014 - 2019, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <stdlib.h>
#include <string.h>
#include "nordic_common.h"
#include "coap_message.h"
#include "coap_api.h"
#include "iot_common.h"
#include "sdk_config.h"
#include "app_util.h"
#define COAP_PAYLOAD_MARKER_SIZE 1
/**@brief Verify that there is a index available for a new option. */
#define OPTION_INDEX_AVAIL_CHECK(COUNT) \
if ((COUNT) >= COAP_MAX_NUMBER_OF_OPTIONS) \
{ \
return (NRF_ERROR_NO_MEM | IOT_COAP_ERR_BASE); \
}
#if (COAP_DISABLE_API_PARAM_CHECK == 0)
/**@brief Verify NULL parameters are not passed to API by application. */
#define NULL_PARAM_CHECK(PARAM) \
if ((PARAM) == NULL) \
{ \
return (NRF_ERROR_NULL | IOT_COAP_ERR_BASE); \
}
#else
#define NULL_PARAM_CHECK(PARAM)
#define OPTION_INDEX_AVAIL_CHECK(COUNT)
#endif // COAP_DISABLE_API_PARAM_CHECK
uint32_t coap_message_create(coap_message_t * p_message, coap_message_conf_t * p_init_config)
{
NULL_PARAM_CHECK(p_message);
NULL_PARAM_CHECK(p_init_config);
// Setting default value for version.
p_message->header.version = COAP_VERSION;
// Copy values from the init config.
p_message->header.type = p_init_config->type;
p_message->header.token_len = p_init_config->token_len;
p_message->header.code = p_init_config->code;
p_message->header.id = p_init_config->id;
p_message->response_callback = p_init_config->response_callback;
p_message->p_arg = NULL;
if (p_init_config->port.port_number == 0)
{
return (NRF_ERROR_INVALID_PARAM | IOT_COAP_ERR_BASE);
}
memcpy(&p_message->port, &p_init_config->port, sizeof(coap_port_t));
memcpy(p_message->token, p_init_config->token, sizeof(p_init_config->token));
return NRF_SUCCESS;
}
/**@brief Decode CoAP option
*
* @param[in] p_raw_option Pointer to the memory buffer where the raw option is located.
* @param[inout] p_message Pointer to the current message. Used to retrieve information about
* where current option delta and the size of free memory to add the
* values of the option. Used as a container where to put
* the parsed option.
* @param[out] byte_count Number of bytes parsed. Used to indicate where the next option
* might be located (if any left) in the raw message buffer.
*
* @retval NRF_SUCCESS If the option parsing went successful.
* @retval NRF_ERROR_DATA_SIZE If there is no more space left in the free memory to add the
* option value to the p_message.
*/
static uint32_t decode_option(const uint8_t * p_raw_option, coap_message_t * p_message, uint16_t * byte_count)
{
uint16_t byte_index = 0;
uint8_t option_num = p_message->options_count;
// Calculate the option number.
uint16_t option_delta = (p_raw_option[byte_index] & 0xF0) >> 4;
// Calculate the option length.
uint16_t option_length = (p_raw_option[byte_index] & 0x0F);
byte_index++;
uint16_t acc_option_delta = p_message->options_delta;
if (option_delta == 13)
{
// read one additional byte to get the extended delta.
acc_option_delta += 13 + p_raw_option[byte_index++];
}
else if (option_delta == 14)
{
// read one additional byte to get the extended delta.
acc_option_delta += 269;
acc_option_delta += (p_raw_option[byte_index++] << 8);
acc_option_delta += (p_raw_option[byte_index++]);
}
else
{
acc_option_delta += option_delta;
}
// Set the accumlated delta as the option number.
p_message->options[option_num].number = acc_option_delta;
if (option_length == 13)
{
option_length = 13 + p_raw_option[byte_index++];
}
else if (option_length == 14)
{
option_length = 269;
option_length += (p_raw_option[byte_index++] << 8);
option_length += p_raw_option[byte_index++];
}
// Set the option length including extended bytes.
p_message->options[option_num].length = option_length;
// Point p_data to the memory where to find the option value.
p_message->options[option_num].p_data = (uint8_t *)&p_raw_option[byte_index];
// Update the delta counter with latest option number.
p_message->options_delta = p_message->options[option_num].number;
byte_index += p_message->options[option_num].length;
*byte_count = byte_index;
return NRF_SUCCESS;
}
/**@brief Encode CoAP option delta and length bytes.
*
* @param[inout] encoded_value Value to encode. In return the value after encoding.
* @param[out] encoded_value_ext The value of the encoded extended bytes.
*
* @return The size of the extended byte field.
*/
static inline uint8_t encode_extended_bytes(uint16_t * value,
uint16_t * value_ext)
{
uint16_t raw_value = *value;
uint8_t ext_size = 0;
if (raw_value >= 269)
{
*value = 14;
*value_ext = raw_value - 269;
ext_size = 2;
}
else if (raw_value >= 13)
{
*value = 13;
*value_ext = raw_value - 13;
ext_size = 1;
}
else
{
*value = raw_value;
*value_ext = 0;
}
return ext_size;
}
static uint32_t encode_option(uint8_t * p_buffer, coap_option_t * p_option, uint16_t * byte_count)
{
uint16_t delta_ext = 0;
uint16_t delta = p_option->number;
uint8_t delta_ext_size = encode_extended_bytes(&delta,
&delta_ext);
uint16_t length = p_option->length;
uint16_t length_ext = 0;
uint8_t length_ext_size = encode_extended_bytes(&length,
&length_ext);
if (p_buffer == NULL)
{
uint16_t header_size = 1;
*byte_count = header_size + delta_ext_size + length_ext_size + p_option->length;
return NRF_SUCCESS;
}
uint16_t byte_index = 0;
// Add the option header.
p_buffer[byte_index++] = ((delta & 0x0F) << 4) | (length & 0x0F);
// Add option delta extended bytes to the buffer.
if (delta_ext_size == 1)
{
// Add first byte of delta_ext to the option header.
p_buffer[byte_index++] = (uint8_t)delta_ext;
}
else if (delta_ext_size == 2)
{
// uint16 in Network Byte Order.
p_buffer[byte_index++] = (uint8_t)((delta_ext & 0xFF00) >> 8);
p_buffer[byte_index++] = (uint8_t)((delta_ext & 0x00FF));
}
if (length_ext_size == 1)
{
// Add first byte of length_ext to the option header.
p_buffer[byte_index++] = (uint8_t)length_ext;
}
else if (length_ext_size == 2)
{
// uint16 in Network Byte Order.
p_buffer[byte_index++] = (uint8_t)((length_ext & 0xFF00) >> 8);
p_buffer[byte_index++] = (uint8_t)((length_ext & 0x00FF));
}
memcpy(&p_buffer[byte_index], p_option->p_data, p_option->length);
*byte_count = byte_index + p_option->length;
return NRF_SUCCESS;
}
uint32_t coap_message_decode(coap_message_t * p_message,
const uint8_t * p_raw_message,
uint16_t message_len)
{
NULL_PARAM_CHECK(p_message);
NULL_PARAM_CHECK(p_raw_message);
// Check that the raw message contains the mandatory header.
if (message_len < 4)
{
return (NRF_ERROR_INVALID_LENGTH | IOT_COAP_ERR_BASE);
}
// Parse the content of the raw message buffer.
uint16_t byte_index = 0;
// Parse the 4 byte CoAP header.
p_message->header.version = (p_raw_message[byte_index] >> 6);
p_message->header.type = (coap_msg_type_t)((p_raw_message[byte_index] >> 4) & 0x03);
p_message->header.token_len = (p_raw_message[byte_index] & 0x0F);
byte_index++;
p_message->header.code = (coap_msg_code_t)p_raw_message[byte_index];
byte_index++;
p_message->header.id = p_raw_message[byte_index++] << 8;
p_message->header.id += p_raw_message[byte_index++];
// Parse the token, if any.
for (uint8_t index = 0; (byte_index < message_len) && (index < p_message->header.token_len); index++)
{
p_message->token[index] = p_raw_message[byte_index++];
}
p_message->options_count = 0;
p_message->options_delta = 0;
// Parse the options if any.
while ((byte_index < message_len) && (p_raw_message[byte_index] != COAP_PAYLOAD_MARKER))
{
uint32_t err_code;
uint16_t byte_count = 0;
err_code = decode_option(&p_raw_message[byte_index], p_message, &byte_count);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
p_message->options_count += 1;
byte_index += byte_count;
}
// If there any more bytes to parse this would be the payload.
if (byte_index < message_len)
{
// Verify that we have a payload marker.
if (p_raw_message[byte_index] == COAP_PAYLOAD_MARKER)
{
byte_index++;
}
else
{
return COAP_MESSAGE_INVALID_CONTENT;
}
p_message->payload_len = message_len - byte_index;
p_message->p_payload = (uint8_t *)&p_raw_message[byte_index];
}
return NRF_SUCCESS;
}
uint32_t coap_message_encode(coap_message_t * p_message,
uint8_t * p_buffer,
uint16_t * p_length)
{
NULL_PARAM_CHECK(p_length);
NULL_PARAM_CHECK(p_message);
// calculated size
uint16_t total_packet_size = 4;
if (p_message->payload_len > 0)
{
total_packet_size += p_message->payload_len;
total_packet_size += COAP_PAYLOAD_MARKER_SIZE;
}
if (p_message->header.token_len > 8)
{
return (NRF_ERROR_INVALID_DATA | IOT_COAP_ERR_BASE);
}
total_packet_size += p_message->header.token_len;
total_packet_size += p_message->options_len;
// If this was a length check, return after setting the length in the output parameter.
if (*p_length == 0)
{
*p_length = total_packet_size;
return NRF_SUCCESS;
}
// Check that the buffer provided is sufficient.
if (*p_length < total_packet_size)
{
return (NRF_ERROR_DATA_SIZE | IOT_COAP_ERR_BASE);
}
if (((p_message->payload_len > 0 && p_message->p_payload == NULL)) ||
(p_buffer == NULL))
{
return COAP_MESSAGE_ERROR_NULL;
}
// Start filling the bytes.
uint16_t byte_index = 0;
// TODO: Verify the values of the header fields.
// if (version > 1)
// if (p_message->type > COAP_TYPE_RST)
// if (p_message->token_len > 8)
p_buffer[byte_index] = (((p_message->header.version & 0x3) << 6) | ((p_message->header.type & 0x3) << 4)) | (p_message->header.token_len & 0x0F);
byte_index++;
p_buffer[byte_index] = p_message->header.code;
byte_index++;
p_buffer[byte_index++] = (p_message->header.id & 0xFF00) >> 8;
p_buffer[byte_index++] = (p_message->header.id & 0x00FF);
memcpy(&p_buffer[byte_index], p_message->token, p_message->header.token_len);
byte_index += p_message->header.token_len;
//memcpy(&p_buffer[byte_index], &p_message->p_data[0], p_message->options_len);
for (uint8_t i = 0; i < p_message->options_count; i++)
{
uint32_t err_code;
uint16_t byte_count = 0;
err_code = encode_option(&p_buffer[byte_index], &p_message->options[i], &byte_count);
if (err_code == NRF_SUCCESS)
{
byte_index += byte_count;
}
else
{
// Throw an error.
}
}
if (p_message->payload_len > 0 && p_message->p_payload != NULL)
{
p_buffer[byte_index++] = 0xFF;
memcpy(&p_buffer[byte_index], p_message->p_payload, p_message->payload_len);
}
*p_length = total_packet_size;
return NRF_SUCCESS;
}
uint32_t coap_message_opt_empty_add(coap_message_t * p_message, uint16_t option_num)
{
OPTION_INDEX_AVAIL_CHECK(p_message->options_count);
uint32_t err_code;
uint16_t encoded_len = 0;
uint8_t current_option_index = p_message->options_count;
p_message->options[current_option_index].number = option_num - p_message->options_delta;
p_message->options[current_option_index].length = encoded_len;
// Set accumulated option delta for next option.
p_message->options_delta = option_num;
// Calculate option size
uint16_t option_byte_count = 0;
// do a length check to encode_option to get the header length.
err_code = encode_option(NULL, &p_message->options[current_option_index], &option_byte_count);
// Accumulate expected size of all options with headers.
p_message->options_len += option_byte_count;
p_message->options_count += 1;
return err_code;
}
uint32_t coap_message_opt_uint_add(coap_message_t * p_message,
uint16_t option_num,
uint32_t data)
{
OPTION_INDEX_AVAIL_CHECK(p_message->options_count);
uint32_t err_code;
uint16_t encoded_len = p_message->data_len - p_message->options_offset;
uint8_t current_option_index = p_message->options_count;
uint8_t * p_next_option_data = &p_message->p_data[p_message->options_offset];
// If the value of the option is 0, do not encode the 0, as this can be omitted. (RFC7252 3.2)
if (data == 0)
{
encoded_len = 0;
}
else
{
err_code = coap_opt_uint_encode(p_next_option_data, &encoded_len, data);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
}
p_message->options[current_option_index].p_data = p_next_option_data;
p_message->options[current_option_index].number = option_num - p_message->options_delta;
p_message->options[current_option_index].length = encoded_len;
// Set accumulated option delta for next option.
p_message->options_delta = option_num;
// Calculate option size.
uint16_t option_byte_count = 0;
// Do a length check to encode_option to get the header length.
err_code = encode_option(NULL, &p_message->options[current_option_index], &option_byte_count);
// Accumulate expected size of all options with headers.
p_message->options_len += option_byte_count;
p_message->options_count += 1;
// Increase the pointer offset for the next option data in the scratch buffer.
p_message->options_offset += encoded_len;
return err_code;
}
uint32_t coap_message_opt_str_add(coap_message_t * p_message, uint16_t option_num, uint8_t * p_data, uint16_t length)
{
OPTION_INDEX_AVAIL_CHECK(p_message->options_count);
uint32_t err_code;
uint16_t encoded_len = length;
uint8_t current_option_index = p_message->options_count;
uint8_t * p_next_option_data = &p_message->p_data[p_message->options_offset];
err_code = coap_opt_string_encode(p_next_option_data, &encoded_len, p_data, length);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
p_message->options[current_option_index].p_data = p_next_option_data;
p_message->options[current_option_index].number = option_num - p_message->options_delta;
p_message->options[current_option_index].length = encoded_len;
// Set accumulated option delta for next option.
p_message->options_delta = option_num;
// Calculate option size
uint16_t option_byte_count = 0;
// do a length check to encode_option to get the header length.
err_code = encode_option(NULL, &p_message->options[current_option_index], &option_byte_count);
// Accumulate expected size of all options with headers.
p_message->options_len += option_byte_count;
p_message->options_count += 1;
p_message->options_offset += encoded_len;
return err_code;
}
uint32_t coap_message_opt_opaque_add(coap_message_t * p_message, uint16_t option_num, uint8_t * p_data, uint16_t length)
{
OPTION_INDEX_AVAIL_CHECK(p_message->options_count);
// Check if it is possible to add a new option of this length.
if ((p_message->data_len - p_message->options_offset) < length)
{
return (NRF_ERROR_DATA_SIZE | IOT_COAP_ERR_BASE);
}
uint32_t err_code = NRF_SUCCESS;
uint16_t encoded_len = length;
uint8_t current_option_index = p_message->options_count;
uint8_t * p_next_option_data = &p_message->p_data[p_message->options_offset];
memcpy(p_next_option_data, p_data, encoded_len);
p_message->options[current_option_index].p_data = p_next_option_data;
p_message->options[current_option_index].number = option_num - p_message->options_delta;
p_message->options[current_option_index].length = encoded_len;
// Set accumulated option delta for next option.
p_message->options_delta = option_num;
// Calculate option size
uint16_t option_byte_count = 0;
// do a length check to encode_option to get the header length.
err_code = encode_option(NULL, &p_message->options[current_option_index], &option_byte_count);
// Accumulate expected size of all options with headers.
p_message->options_len += option_byte_count;
p_message->options_count += 1;
p_message->options_offset += encoded_len;
return err_code;
}
uint32_t coap_message_payload_set(coap_message_t * p_message,
void * p_payload,
uint16_t payload_len)
{
// Check that there is available memory in the p_message->p_data scratch buffer.
if (payload_len > (COAP_MESSAGE_DATA_MAX_SIZE - p_message->options_offset))
{
return (NRF_ERROR_NO_MEM | IOT_COAP_ERR_BASE);
}
p_message->p_payload = &p_message->p_data[p_message->options_offset];
p_message->payload_len = payload_len;
memcpy(p_message->p_payload, p_payload, payload_len);
return NRF_SUCCESS;
}
uint32_t coap_message_remote_addr_set(coap_message_t * p_message, coap_remote_t * p_address)
{
memcpy(&p_message->remote, p_address, sizeof(coap_remote_t));
return NRF_SUCCESS;
}
uint32_t coap_message_opt_index_get(uint8_t * p_index, coap_message_t * p_message, uint16_t option)
{
NULL_PARAM_CHECK(p_index);
NULL_PARAM_CHECK(p_message);
uint8_t index;
for (index = 0; index < p_message->options_count; index++)
{
if (p_message->options[index].number == option)
{
*p_index = index;
return NRF_SUCCESS;
}
}
return (NRF_ERROR_NOT_FOUND | IOT_COAP_ERR_BASE);
}
uint32_t coap_message_opt_present(coap_message_t * p_message, uint16_t option)
{
NULL_PARAM_CHECK(p_message);
uint8_t index;
for (index = 0; index < p_message->options_count; index++)
{
if (p_message->options[index].number == option)
{
return NRF_SUCCESS;
}
}
return (NRF_ERROR_NOT_FOUND | IOT_COAP_ERR_BASE);
}
static uint32_t bit_to_content_format(coap_content_type_t * p_ct, uint32_t bit)
{
switch (bit)
{
case COAP_CT_MASK_PLAIN_TEXT:
*p_ct = COAP_CT_PLAIN_TEXT;
break;
case COAP_CT_MASK_APP_LINK_FORMAT:
*p_ct = COAP_CT_APP_LINK_FORMAT;
break;
case COAP_CT_MASK_APP_XML:
*p_ct = COAP_CT_APP_XML;
break;
case COAP_CT_MASK_APP_OCTET_STREAM:
*p_ct = COAP_CT_APP_OCTET_STREAM;
break;
case COAP_CT_MASK_APP_EXI:
*p_ct = COAP_CT_APP_EXI;
break;
case COAP_CT_MASK_APP_JSON:
*p_ct = COAP_CT_APP_JSON;
break;
default:
return (NRF_ERROR_NOT_FOUND | IOT_COAP_ERR_BASE);
}
return NRF_SUCCESS;
}
static uint32_t content_format_to_bit(coap_content_type_t ct)
{
uint32_t mask = 0;
switch (ct)
{
case COAP_CT_PLAIN_TEXT:
mask = COAP_CT_MASK_PLAIN_TEXT;
break;
case COAP_CT_APP_LINK_FORMAT:
mask = COAP_CT_MASK_APP_LINK_FORMAT;
break;
case COAP_CT_APP_XML:
mask = COAP_CT_MASK_APP_XML;
break;
case COAP_CT_APP_OCTET_STREAM:
mask = COAP_CT_MASK_APP_OCTET_STREAM;
break;
case COAP_CT_APP_EXI:
mask = COAP_CT_MASK_APP_EXI;
break;
case COAP_CT_APP_JSON:
mask = COAP_CT_MASK_APP_JSON;
break;
default:
break;
}
return mask;
}
uint32_t coap_message_ct_mask_get(coap_message_t * p_message, uint32_t * p_mask)
{
NULL_PARAM_CHECK(p_message);
NULL_PARAM_CHECK(p_mask);
(*p_mask) = 0;
for (uint8_t index = 0; index < p_message->options_count; index++)
{
if (p_message->options[index].number == COAP_OPT_CONTENT_FORMAT)
{
uint32_t value;
uint32_t err_code = coap_opt_uint_decode(&value,
p_message->options[index].length,
p_message->options[index].p_data);
if (err_code == NRF_SUCCESS)
{
coap_content_type_t ct = (coap_content_type_t)value;
*p_mask |= content_format_to_bit(ct);
}
else
{
return err_code;
}
}
}
return NRF_SUCCESS;
}
uint32_t coap_message_accept_mask_get(coap_message_t * p_message, uint32_t * p_mask)
{
NULL_PARAM_CHECK(p_message);
NULL_PARAM_CHECK(p_mask);
(*p_mask) = 0;
for (uint8_t index = 0; index < p_message->options_count; index++)
{
if (p_message->options[index].number == COAP_OPT_ACCEPT)
{
uint32_t value;
uint32_t err_code = coap_opt_uint_decode(&value,
p_message->options[index].length,
p_message->options[index].p_data);
if (err_code == NRF_SUCCESS)
{
coap_content_type_t ct = (coap_content_type_t)value;
(*p_mask) |= content_format_to_bit(ct);
}
else
{
return err_code;
}
}
}
return NRF_SUCCESS;
}
uint32_t coap_message_ct_match_select(coap_content_type_t * p_ct, coap_message_t * p_message, coap_resource_t * p_resource)
{
// Check ACCEPT options
uint32_t accept_mask = 0;
(void)coap_message_accept_mask_get(p_message, &accept_mask);
if (accept_mask == 0)
{
// Default to plain text if option not set.
accept_mask = COAP_CT_MASK_PLAIN_TEXT;
}
// Select the first common content-type between the resource and the CoAP client.
uint32_t common_ct = p_resource->ct_support_mask & accept_mask;
uint32_t bit_index;
for (bit_index = 0; bit_index < 32; bit_index++)
{
if (((common_ct >> bit_index) & 0x1 ) == 1)
{
break;
}
}
uint32_t err_code = bit_to_content_format(p_ct, 1 << bit_index);
return err_code;
}