spider-bot/fw/nrf52/nrf5_sdk/components/drivers_ext/hts221/hts221.c

256 lines
9.0 KiB
C

/**
* Copyright (c) 2017 - 2019, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "hts221.h"
#include <string.h>
#define HTS221_WRITE(p_instance, msg) \
nrf_twi_sensor_write(p_instance->p_sensor_data, \
p_instance->sensor_addr, \
msg, \
ARRAY_SIZE(msg), \
true)
static void hts221_init_cb(ret_code_t result, void * p_register_data)
{
hts221_calib_t * calib_info = (hts221_calib_t *) p_register_data;
uint8_t calib_raw[HTS221_REG_CALIBRATION_NUM];
memcpy(calib_raw, calib_info, HTS221_REG_CALIBRATION_NUM);
calib_info->H0_rH_x2 = calib_raw[0];
calib_info->H1_rH_x2 = calib_raw[1];
calib_info->T0_degC_x8 = (uint16_t)calib_raw[2]
+ ((uint16_t)(calib_raw[5] & 0x03) << 8);
calib_info->T1_degC_x8 = (uint16_t)calib_raw[3]
+ ((uint16_t)((calib_raw[5] >> 2) & 0x03) << 8);
calib_info->H0_T0_OUT = (int16_t)calib_raw[6] + ((int16_t)calib_raw[7] << 8);
calib_info->H1_T0_OUT = (int16_t)calib_raw[10] + ((int16_t)calib_raw[11] << 8);
calib_info->T0_OUT = (int16_t)calib_raw[12] + ((int16_t)calib_raw[13] << 8);
calib_info->T1_OUT = (int16_t)calib_raw[14] + ((int16_t)calib_raw[15] << 8);
}
ret_code_t hts221_init(hts221_instance_t * p_instance)
{
ASSERT(p_instance != NULL);
if (p_instance->p_sensor_data->p_twi_mngr->p_queue->size < HTS221_MIN_QUEUE_SIZE)
{
return NRF_ERROR_INVALID_LENGTH;
}
p_instance->ctrl_reg1 = 0;
uint8_t send_msg[] = {
HTS221_REG_AV_CONF,
HTS221_DEF_AV_CONF,
0,
0,
0
};
ret_code_t err = HTS221_WRITE(p_instance, send_msg);
if (err != NRF_SUCCESS)
{
return err;
}
return nrf_twi_sensor_reg_read(p_instance->p_sensor_data,
p_instance->sensor_addr,
HTS221_REG_CALIBRATION | HTS221_INCR_REG_MASK,
hts221_init_cb,
(uint8_t *) &p_instance->calib_info,
HTS221_REG_CALIBRATION_NUM);
}
ret_code_t hts221_avg_cfg(hts221_instance_t * p_instance,
hts221_temp_avg_samples_t temp_avg,
hts221_hum_avg_samples_t hum_avg)
{
ASSERT(p_instance != NULL);
uint8_t reg_val = 0;
NRF_TWI_SENSOR_REG_SET(reg_val, HTS221_AVGT_MASK, HTS221_AVGT_POS, temp_avg);
NRF_TWI_SENSOR_REG_SET(reg_val, HTS221_AVGH_MASK, HTS221_AVGH_POS, hum_avg);
uint8_t send_msg[] = {
HTS221_REG_AV_CONF,
reg_val
};
return HTS221_WRITE(p_instance, send_msg);
}
ret_code_t hts221_data_rate_cfg(hts221_instance_t * p_instance, hts221_odr_t odr)
{
ASSERT(p_instance != NULL);
NRF_TWI_SENSOR_REG_SET(p_instance->ctrl_reg1, HTS221_ODR_MASK, HTS221_ODR_POS, odr);
uint8_t send_msg[] = {
HTS221_REG_CTRL_REG1,
p_instance->ctrl_reg1
};
return HTS221_WRITE(p_instance, send_msg);
}
ret_code_t hts221_pd_enable(hts221_instance_t * p_instance, bool enable)
{
ASSERT(p_instance != NULL);
NRF_TWI_SENSOR_REG_SET(p_instance->ctrl_reg1, HTS221_PD_MASK, HTS221_PD_POS, enable);
uint8_t send_msg[] = {
HTS221_REG_CTRL_REG1,
p_instance->ctrl_reg1
};
return HTS221_WRITE(p_instance, send_msg);
}
ret_code_t hts221_boot(hts221_instance_t * p_instance)
{
ASSERT(p_instance != NULL);
uint8_t reg_val = p_instance->ctrl_reg2;
NRF_TWI_SENSOR_REG_SET(reg_val, HTS221_BOOT_MASK, HTS221_BOOT_POS, 1);
uint8_t send_msg[] = {
HTS221_REG_CTRL_REG2,
reg_val
};
return HTS221_WRITE(p_instance, send_msg);
}
ret_code_t hts221_heater_enable(hts221_instance_t * p_instance, bool enable)
{
ASSERT(p_instance != NULL);
NRF_TWI_SENSOR_REG_SET(p_instance->ctrl_reg2, HTS221_HEATER_MASK, HTS221_HEATER_POS, enable);
uint8_t send_msg[] = {
HTS221_REG_CTRL_REG2,
p_instance->ctrl_reg2
};
return HTS221_WRITE(p_instance, send_msg);
}
ret_code_t hts221_oneshot(hts221_instance_t * p_instance)
{
ASSERT(p_instance != NULL);
uint8_t reg_val = p_instance->ctrl_reg2;
NRF_TWI_SENSOR_REG_SET(reg_val, HTS221_ONE_SHOT_MASK, HTS221_ONE_SHOT_POS, true);
uint8_t send_msg[] = {
HTS221_REG_CTRL_REG2,
reg_val
};
return HTS221_WRITE(p_instance, send_msg);
}
ret_code_t hts221_drdy_pin_cfg(hts221_instance_t * p_instance,
bool active_low,
bool operation,
bool drdy_enable)
{
ASSERT(p_instance != NULL);
uint8_t reg_val = 0;
NRF_TWI_SENSOR_REG_SET(reg_val, HTS221_DRDY_H_L_MASK, HTS221_DRDY_H_L_POS, active_low);
NRF_TWI_SENSOR_REG_SET(reg_val, HTS221_PP_OD_MASK, HTS221_PP_OD_POS, operation);
NRF_TWI_SENSOR_REG_SET(reg_val, HTS221_DRDY_EN_MASK, HTS221_DRDY_EN_POS, drdy_enable);
uint8_t send_msg[] = {
HTS221_REG_CTRL_REG3,
reg_val
};
return HTS221_WRITE(p_instance, send_msg);
}
ret_code_t hts221_temp_read(hts221_instance_t * p_instance,
hts221_data_callback_t user_callback,
int16_t * p_temp)
{
ASSERT(p_instance != NULL);
return nrf_twi_sensor_reg_read(p_instance->p_sensor_data,
p_instance->sensor_addr,
HTS221_REG_TEMP_OUT_L | HTS221_INCR_REG_MASK,
(nrf_twi_sensor_reg_cb_t) user_callback,
(uint8_t *) p_temp,
2);
}
int16_t hts221_temp_process(hts221_instance_t * p_instance, int16_t raw_temp)
{
ASSERT(p_instance != NULL);
int32_t y;
int32_t x0 = p_instance->calib_info.T0_OUT;
int32_t x1 = p_instance->calib_info.T1_OUT;
int32_t y0 = p_instance->calib_info.T0_degC_x8;
int32_t y1 = p_instance->calib_info.T1_degC_x8;
y = ((y0 * (x1 - raw_temp)) + (y1 * (raw_temp - x0))) / (x1 - x0);
return y;
}
ret_code_t hts221_hum_read(hts221_instance_t * p_instance,
hts221_data_callback_t user_callback,
int16_t * p_hum)
{
ASSERT(p_instance != NULL);
return nrf_twi_sensor_reg_read(p_instance->p_sensor_data,
p_instance->sensor_addr,
HTS221_REG_HUM_OUT_L | HTS221_INCR_REG_MASK,
(nrf_twi_sensor_reg_cb_t) user_callback,
(uint8_t *) p_hum,
2);
}
int16_t hts221_hum_process(hts221_instance_t * p_instance, int16_t raw_hum)
{
ASSERT(p_instance != NULL);
int32_t y;
int32_t x0 = p_instance->calib_info.H0_T0_OUT;
int32_t x1 = p_instance->calib_info.H1_T0_OUT;
int32_t y0 = p_instance->calib_info.H0_rH_x2;
int32_t y1 = p_instance->calib_info.H1_rH_x2;
y = ((y0 * (x1 - raw_hum)) + (y1 * (raw_hum - x0))) / (x1 - x0);
return y;
}