spider-bot/fw/nrf52/nrf5_sdk/components/libraries/csense/nrf_csense.c

663 lines
20 KiB
C

/**
* Copyright (c) 2016 - 2019, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(NRF_CSENSE)
#include <string.h>
#include <nrfx.h>
#include "nrf_csense.h"
#include "nrf_peripherals.h"
#include "nrf_assert.h"
#if defined(__CC_ARM)
#elif defined(__ICCARM__)
#elif defined(__GNUC__)
#ifndef __CLZ
#define __CLZ(x) __builtin_clz(x)
#endif
#endif
APP_TIMER_DEF(nrf_csense_timer);
typedef struct
{
nrf_csense_event_handler_t event_handler; //!< Event handler for module.
nrfx_drv_state_t state; //!< State of module.
uint32_t ticks; //!< Timeout ticks of app_timer instance controlling csense module.
uint16_t raw_analog_values[MAX_ANALOG_INPUTS]; //!< Raw values of measurements.
uint8_t enabled_analog_channels_mask; //!< Mask of enabled channels.
} nrf_csense_t;
/* Module instance. */
static nrf_csense_t m_nrf_csense;
/* First of touch elements instances that creates linked list. */
static nrf_csense_instance_t * mp_nrf_csense_instance_head;
/* Buffer for values got from measurements. */
static uint16_t m_values_buffer[NRF_CSENSE_MAX_PADS_NUMBER];
/**
* @brief Function for handling time-outs.
*
* @param[in] p_context General purpose pointer. Will be passed to the time-out handler
* when the timer expires.
*/
static void csense_timer_handler(void * p_context)
{
if (m_nrf_csense.state != NRFX_DRV_STATE_POWERED_ON)
{
return;
}
if (nrf_drv_csense_sample() == NRF_ERROR_BUSY)
{
return;
}
}
/**
* @brief Function for updating maximum or minimum value.
*
* @param [in] p_instance Pointer to csense instance.
* @param [in] p_pad Pointer to pad which should be checked for minimum or maximum value.
*/
__STATIC_INLINE void min_or_max_update(nrf_csense_instance_t const * p_instance,
nrf_csense_pad_t * p_pad)
{
uint16_t val = m_nrf_csense.raw_analog_values[p_pad->analog_input_number];
if (p_instance->min_max[p_pad->pad_index].min_value > val)
{
p_instance->min_max[p_pad->pad_index].min_value = val;
}
if (p_instance->min_max[p_pad->pad_index].max_value < val)
{
p_instance->min_max[p_pad->pad_index].max_value = val;
}
}
/**
* @brief Function for calculating proportions on slider pad.
*
* @note This function help to self calibrate the pads.
*
* @param [in] p_instance Pointer to csense instance.
* @param [in] p_pad Pointer to pad to calculate ratio for.
*
* @return Difference between maximum and minimum values read on pads or 0 if minimum is bigger than maximum.
*
*/
__STATIC_INLINE uint16_t ratio_calculate(nrf_csense_instance_t const * p_instance,
nrf_csense_pad_t * p_pad)
{
if (p_instance->min_max[p_pad->pad_index].max_value > p_instance->min_max[p_pad->pad_index].min_value)
{
uint16_t scale;
scale = (uint16_t)(p_instance->min_max[p_pad->pad_index].max_value -
p_instance->min_max[p_pad->pad_index].min_value);
return scale;
}
else
{
return 0;
}
}
/**
* @brief Function for calculating step.
*
* Function calculates step for slider basing on index of touched pads and values measured on
* them and neighboring pads.
*
* @param[in] p_instance Pointer to csense instance.
* @param[in] pad_index Index of the pad.
*
* @return Detected touched step.
*/
static uint16_t calculate_step(nrf_csense_instance_t * p_instance,
uint8_t pad_index)
{
uint16_t step = 0;
uint32_t values_sum;
uint32_t values_product;
pad_index += 1;
values_sum = m_values_buffer[pad_index] + m_values_buffer[pad_index - 1] +
m_values_buffer[pad_index + 1];
values_product = (uint32_t)(p_instance->steps-1) *
(m_values_buffer[pad_index - 1] * (pad_index - 2)
+ m_values_buffer[pad_index] * (pad_index - 1)
+ m_values_buffer[pad_index + 1] * (pad_index));
step = 1 + ROUNDED_DIV(values_product, (values_sum * (p_instance->number_of_pads - 1))); // Add 1 to the result of the division
// to get the appropriate range of values.
memset((void*)m_values_buffer, 0, sizeof(m_values_buffer));
return step;
}
/**
* @brief Function for finding mask of touched pads.
*
* @param [in] p_instance Pointer to csense instance.
*
* @return Mask of touched pads.
*/
static uint32_t find_touched_mask(nrf_csense_instance_t const * p_instance)
{
uint32_t touched_mask = 0;
uint16_t max_value = 0;
uint16_t ratio;
nrf_csense_pad_t * p_pad;
for (p_pad = p_instance->p_nrf_csense_pad; NULL != p_pad; p_pad = p_pad->p_next_pad) // run through all pads and look for those with biggest value
{
min_or_max_update(p_instance, p_pad);
ratio = ratio_calculate(p_instance, p_pad);
if (ratio == 0)
{
return 0;
}
uint16_t val =
(uint16_t)(((uint32_t)(m_nrf_csense.raw_analog_values[p_pad->analog_input_number] -
p_instance->min_max[p_pad->pad_index].min_value) *
NRF_CSENSE_MAX_VALUE) / ratio);
m_values_buffer[p_pad->pad_index+1] = val;
if (val > max_value)
{
max_value = val;
touched_mask = (1UL << (p_pad->pad_index));
}
else if (val == max_value)
{
max_value = val;
touched_mask |= (1UL << (p_pad->pad_index));
}
}
return touched_mask;
}
/**
* @brief Function for finding touched pad.
*
* If there is more than one pad connected to an analog channel this functions which one was actually touched. This is done by
* comparing values of neighboring pads.
*
* @param [in] instance Pointer to csense instance.
* @param [in] touched_mask Mask of touched pads.
*
* @return Touched pad.
*/
static uint16_t find_touched_pad(nrf_csense_instance_t const * p_instance,
uint32_t touched_mask)
{
uint8_t i;
uint8_t biggest_deviation = 0;
uint8_t temp_biggest = 0;
uint16_t pad = UINT16_MAX;
static uint16_t previous_pad = 0;
for (i = 0; i < (p_instance->number_of_pads); i++)
{
if ((1UL << i) & touched_mask)
{
temp_biggest = m_values_buffer[i];
temp_biggest += m_values_buffer[i + 2];
if ((i != 0) && (i != ((p_instance->number_of_pads-1))))
{
temp_biggest /= 2;
}
if ((temp_biggest > NRF_CSENSE_PAD_DEVIATION) &&
(temp_biggest > biggest_deviation))
{
biggest_deviation = temp_biggest;
pad = i;
}
}
}
if (pad == UINT16_MAX)
{
pad = previous_pad;
}
else
{
previous_pad = pad;
}
return pad;
}
/**
* @brief Function for finding touched step.
*
* @param [in] instance Pointer to csense instance.
*
* @return Detected touched step.
*/
static uint16_t find_touched_step(nrf_csense_instance_t * p_instance)
{
uint32_t touched_mask = 0;
uint16_t pad = 0;
uint16_t step;
touched_mask = find_touched_mask(p_instance);
if (touched_mask == 0)
{
return UINT16_MAX;
}
if ((touched_mask & (-(int32_t)touched_mask)) == touched_mask) // Check if there is only one pad with greatest value.
{
pad = 31 - __CLZ(touched_mask);
}
else
{
pad = find_touched_pad(p_instance, touched_mask);
}
step = calculate_step(p_instance, pad);
return step;
}
/**
* @brief Event handler for csense.
*
* param [in] p_event_struct Pointer to event structure.
*/
static void csense_event_handler(nrf_drv_csense_evt_t * p_event_struct)
{
nrf_csense_evt_t event;
static uint16_t prev_analog_values[MAX_ANALOG_INPUTS];
bool touched = false;
nrf_csense_instance_t * instance;
uint8_t i;
if ((m_nrf_csense.enabled_analog_channels_mask & (1UL << (p_event_struct->analog_channel))) == 0)
{
return;
}
m_nrf_csense.raw_analog_values[p_event_struct->analog_channel] = p_event_struct->read_value;
if (nrf_drv_csense_is_busy())
{
return;
}
for (instance = mp_nrf_csense_instance_head; instance != NULL;
instance = instance->p_next_instance) // run through all instances
{
if (instance->is_active)
{
event.p_instance = instance;
nrf_csense_pad_t * p_pad = instance->p_nrf_csense_pad;
for (i = 0; i < MAX_ANALOG_INPUTS; i++)
{
if ((m_nrf_csense.raw_analog_values[i] <
(prev_analog_values[i] - NRF_CSENSE_PAD_HYSTERESIS)) ||
(m_nrf_csense.raw_analog_values[i] >
(prev_analog_values[i] + NRF_CSENSE_PAD_HYSTERESIS)))
{
touched = true;
break;
}
}
if (touched)
{
touched = false;
for (p_pad = instance->p_nrf_csense_pad; p_pad != NULL;
p_pad = p_pad->p_next_pad)
{
if (m_nrf_csense.raw_analog_values[p_pad->analog_input_number] >
p_pad->threshold)
{
touched = true;
break;
}
}
}
else
{
continue;
}
// Specify the event
if ((instance->is_touched) && touched)
{
// dragged
if (instance->number_of_pads > 1)
{
event.params.slider.step = find_touched_step(instance);
event.nrf_csense_evt_type = NRF_CSENSE_SLIDER_EVT_DRAGGED;
m_nrf_csense.event_handler(&event);
}
}
else if ((!(instance->is_touched)) && touched)
{
// pressed
if (instance->number_of_pads > 1)
{
event.params.slider.step = find_touched_step(instance);
event.nrf_csense_evt_type = NRF_CSENSE_SLIDER_EVT_PRESSED;
}
else
{
event.nrf_csense_evt_type = NRF_CSENSE_BTN_EVT_PRESSED;
}
instance->is_touched = true;
m_nrf_csense.event_handler(&event);
}
else if ((instance->is_touched) && (!touched))
{
// released
if (instance->number_of_pads > 1)
{
event.params.slider.step = find_touched_step(instance);
event.nrf_csense_evt_type = NRF_CSENSE_SLIDER_EVT_RELEASED;
}
else
{
event.nrf_csense_evt_type = NRF_CSENSE_BTN_EVT_RELEASED;
}
instance->is_touched = false;
m_nrf_csense.event_handler(&event);
}
else
{
// nothing changed
}
}
touched = false;
}
memset(m_values_buffer, 0, sizeof(m_values_buffer));
memcpy(prev_analog_values, m_nrf_csense.raw_analog_values,
sizeof(m_nrf_csense.raw_analog_values));
}
ret_code_t nrf_csense_init(nrf_csense_event_handler_t event_handler,
uint32_t ticks)
{
ASSERT(event_handler != NULL);
ASSERT(m_nrf_csense.state == NRFX_DRV_STATE_UNINITIALIZED);
ret_code_t err_code;
static const nrf_drv_csense_config_t m_csense_config =
{
.output_pin = NRF_CSENSE_OUTPUT_PIN
};
m_nrf_csense.event_handler = event_handler;
m_nrf_csense.ticks = ticks;
mp_nrf_csense_instance_head = NULL;
err_code = app_timer_create(&nrf_csense_timer, APP_TIMER_MODE_REPEATED, csense_timer_handler);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
err_code = nrf_drv_csense_init(&m_csense_config, csense_event_handler);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
m_nrf_csense.state = NRFX_DRV_STATE_INITIALIZED;
return NRF_SUCCESS;
}
ret_code_t nrf_csense_uninit(void)
{
ASSERT(m_nrf_csense.state != NRFX_DRV_STATE_UNINITIALIZED);
ret_code_t err_code;
nrf_csense_instance_t ** pp_instance = &mp_nrf_csense_instance_head;
err_code = nrf_drv_csense_uninit();
if (err_code != NRF_SUCCESS)
{
return err_code;
}
if (m_nrf_csense.enabled_analog_channels_mask != 0)
{
err_code = app_timer_stop(nrf_csense_timer);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
}
while ((*pp_instance) != NULL)
{
nrf_csense_instance_t ** pp_instance_next = (&(*pp_instance)->p_next_instance);
(*pp_instance) = NULL;
pp_instance = pp_instance_next;
}
memset((void *)&m_nrf_csense, 0, sizeof(nrf_csense_t));
m_nrf_csense.state = NRFX_DRV_STATE_UNINITIALIZED;
return NRF_SUCCESS;
}
ret_code_t nrf_csense_add(nrf_csense_instance_t * const p_instance)
{
ASSERT(m_nrf_csense.state != NRFX_DRV_STATE_UNINITIALIZED);
ASSERT(p_instance->p_next_instance == NULL);
ASSERT(p_instance != NULL);
ret_code_t err_code;
nrf_csense_instance_t ** pp_instance = &mp_nrf_csense_instance_head;
while ((*pp_instance) != NULL)
{
ASSERT((*pp_instance) != p_instance);
pp_instance = &((*pp_instance)->p_next_instance);
}
*pp_instance = p_instance;
err_code = nrf_csense_enable(p_instance);
return err_code;
}
ret_code_t nrf_csense_enable(nrf_csense_instance_t * const p_instance)
{
ASSERT(m_nrf_csense.state != NRFX_DRV_STATE_UNINITIALIZED);
ASSERT(p_instance != NULL);
ret_code_t err_code;
nrf_csense_pad_t const * p_pad;
uint8_t analog_channels_mask = 0;
if (m_nrf_csense.enabled_analog_channels_mask == 0)
{
err_code = app_timer_start(nrf_csense_timer, m_nrf_csense.ticks, NULL);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
}
p_instance->is_active = true;
for (p_pad = p_instance->p_nrf_csense_pad; p_pad != NULL; p_pad = p_pad->p_next_pad)
{
p_instance->min_max[p_pad->pad_index].min_value = UINT16_MAX;
// If channel was already enabled skip it.
if ((m_nrf_csense.enabled_analog_channels_mask & (1UL << (p_pad->analog_input_number))) == 0)
{
analog_channels_mask |= (1UL << (p_pad->analog_input_number));
m_nrf_csense.enabled_analog_channels_mask |= (1UL << (p_pad->analog_input_number));
}
}
m_nrf_csense.state = NRFX_DRV_STATE_POWERED_ON;
nrf_drv_csense_channels_enable(analog_channels_mask);
return NRF_SUCCESS;
}
ret_code_t nrf_csense_disable(nrf_csense_instance_t * const p_instance)
{
ASSERT(m_nrf_csense.state == NRFX_DRV_STATE_POWERED_ON);
ret_code_t err_code;
nrf_csense_instance_t * p_instance_temp = mp_nrf_csense_instance_head;
nrf_csense_pad_t const * p_pad;
uint8_t channels_mask = 0;
uint8_t instance_channels_mask = 0;
for (p_instance_temp = mp_nrf_csense_instance_head; p_instance_temp != NULL;
p_instance_temp = p_instance_temp->p_next_instance)
{
for (p_pad = p_instance_temp->p_nrf_csense_pad; p_pad != NULL; p_pad = p_pad->p_next_pad)
{
if (p_instance_temp == p_instance)
{
instance_channels_mask |= (1UL << (p_pad->analog_input_number));
p_instance->is_active = false;
}
else
{
channels_mask |= (1UL << (p_pad->analog_input_number));
}
}
}
nrf_drv_csense_channels_disable((~channels_mask) & instance_channels_mask);
m_nrf_csense.enabled_analog_channels_mask = channels_mask;
if (m_nrf_csense.enabled_analog_channels_mask == 0)
{
err_code = app_timer_stop(nrf_csense_timer);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
m_nrf_csense.state = NRFX_DRV_STATE_INITIALIZED;
}
return NRF_SUCCESS;
}
ret_code_t nrf_csense_ticks_set(uint32_t ticks)
{
ASSERT(m_nrf_csense.state != NRFX_DRV_STATE_UNINITIALIZED);
ret_code_t err_code;
if (nrf_drv_csense_is_busy())
{
return NRF_ERROR_BUSY;
}
m_nrf_csense.ticks = ticks;
if (m_nrf_csense.state == NRFX_DRV_STATE_POWERED_ON)
{
err_code = app_timer_stop(nrf_csense_timer);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
err_code = app_timer_start(nrf_csense_timer, ticks, NULL);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
}
return NRF_SUCCESS;
}
ret_code_t nrf_csense_steps_set(nrf_csense_instance_t * const p_instance, uint16_t steps)
{
if (p_instance->is_active)
{
return NRF_ERROR_INVALID_STATE;
}
p_instance->steps = steps;
return NRF_SUCCESS;
}
#endif //NRF_MODULE_ENABLED(NRF_CSENSE)