663 lines
20 KiB
C
663 lines
20 KiB
C
/**
|
|
* Copyright (c) 2016 - 2019, Nordic Semiconductor ASA
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form, except as embedded into a Nordic
|
|
* Semiconductor ASA integrated circuit in a product or a software update for
|
|
* such product, must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other
|
|
* materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
|
|
* contributors may be used to endorse or promote products derived from this
|
|
* software without specific prior written permission.
|
|
*
|
|
* 4. This software, with or without modification, must only be used with a
|
|
* Nordic Semiconductor ASA integrated circuit.
|
|
*
|
|
* 5. Any software provided in binary form under this license must not be reverse
|
|
* engineered, decompiled, modified and/or disassembled.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
|
|
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
|
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
#include "sdk_common.h"
|
|
|
|
#if NRF_MODULE_ENABLED(NRF_CSENSE)
|
|
|
|
#include <string.h>
|
|
|
|
#include <nrfx.h>
|
|
#include "nrf_csense.h"
|
|
#include "nrf_peripherals.h"
|
|
#include "nrf_assert.h"
|
|
|
|
#if defined(__CC_ARM)
|
|
#elif defined(__ICCARM__)
|
|
#elif defined(__GNUC__)
|
|
#ifndef __CLZ
|
|
#define __CLZ(x) __builtin_clz(x)
|
|
#endif
|
|
#endif
|
|
|
|
APP_TIMER_DEF(nrf_csense_timer);
|
|
|
|
typedef struct
|
|
{
|
|
nrf_csense_event_handler_t event_handler; //!< Event handler for module.
|
|
nrfx_drv_state_t state; //!< State of module.
|
|
uint32_t ticks; //!< Timeout ticks of app_timer instance controlling csense module.
|
|
uint16_t raw_analog_values[MAX_ANALOG_INPUTS]; //!< Raw values of measurements.
|
|
uint8_t enabled_analog_channels_mask; //!< Mask of enabled channels.
|
|
} nrf_csense_t;
|
|
|
|
/* Module instance. */
|
|
static nrf_csense_t m_nrf_csense;
|
|
|
|
/* First of touch elements instances that creates linked list. */
|
|
static nrf_csense_instance_t * mp_nrf_csense_instance_head;
|
|
|
|
/* Buffer for values got from measurements. */
|
|
static uint16_t m_values_buffer[NRF_CSENSE_MAX_PADS_NUMBER];
|
|
|
|
/**
|
|
* @brief Function for handling time-outs.
|
|
*
|
|
* @param[in] p_context General purpose pointer. Will be passed to the time-out handler
|
|
* when the timer expires.
|
|
*/
|
|
static void csense_timer_handler(void * p_context)
|
|
{
|
|
if (m_nrf_csense.state != NRFX_DRV_STATE_POWERED_ON)
|
|
{
|
|
return;
|
|
}
|
|
|
|
if (nrf_drv_csense_sample() == NRF_ERROR_BUSY)
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Function for updating maximum or minimum value.
|
|
*
|
|
* @param [in] p_instance Pointer to csense instance.
|
|
* @param [in] p_pad Pointer to pad which should be checked for minimum or maximum value.
|
|
*/
|
|
__STATIC_INLINE void min_or_max_update(nrf_csense_instance_t const * p_instance,
|
|
nrf_csense_pad_t * p_pad)
|
|
{
|
|
uint16_t val = m_nrf_csense.raw_analog_values[p_pad->analog_input_number];
|
|
|
|
if (p_instance->min_max[p_pad->pad_index].min_value > val)
|
|
{
|
|
p_instance->min_max[p_pad->pad_index].min_value = val;
|
|
}
|
|
|
|
if (p_instance->min_max[p_pad->pad_index].max_value < val)
|
|
{
|
|
p_instance->min_max[p_pad->pad_index].max_value = val;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Function for calculating proportions on slider pad.
|
|
*
|
|
* @note This function help to self calibrate the pads.
|
|
*
|
|
* @param [in] p_instance Pointer to csense instance.
|
|
* @param [in] p_pad Pointer to pad to calculate ratio for.
|
|
*
|
|
* @return Difference between maximum and minimum values read on pads or 0 if minimum is bigger than maximum.
|
|
*
|
|
*/
|
|
__STATIC_INLINE uint16_t ratio_calculate(nrf_csense_instance_t const * p_instance,
|
|
nrf_csense_pad_t * p_pad)
|
|
{
|
|
if (p_instance->min_max[p_pad->pad_index].max_value > p_instance->min_max[p_pad->pad_index].min_value)
|
|
{
|
|
uint16_t scale;
|
|
scale = (uint16_t)(p_instance->min_max[p_pad->pad_index].max_value -
|
|
p_instance->min_max[p_pad->pad_index].min_value);
|
|
return scale;
|
|
}
|
|
else
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Function for calculating step.
|
|
*
|
|
* Function calculates step for slider basing on index of touched pads and values measured on
|
|
* them and neighboring pads.
|
|
*
|
|
* @param[in] p_instance Pointer to csense instance.
|
|
* @param[in] pad_index Index of the pad.
|
|
*
|
|
* @return Detected touched step.
|
|
*/
|
|
static uint16_t calculate_step(nrf_csense_instance_t * p_instance,
|
|
uint8_t pad_index)
|
|
{
|
|
uint16_t step = 0;
|
|
uint32_t values_sum;
|
|
uint32_t values_product;
|
|
|
|
pad_index += 1;
|
|
|
|
values_sum = m_values_buffer[pad_index] + m_values_buffer[pad_index - 1] +
|
|
m_values_buffer[pad_index + 1];
|
|
values_product = (uint32_t)(p_instance->steps-1) *
|
|
(m_values_buffer[pad_index - 1] * (pad_index - 2)
|
|
+ m_values_buffer[pad_index] * (pad_index - 1)
|
|
+ m_values_buffer[pad_index + 1] * (pad_index));
|
|
step = 1 + ROUNDED_DIV(values_product, (values_sum * (p_instance->number_of_pads - 1))); // Add 1 to the result of the division
|
|
// to get the appropriate range of values.
|
|
memset((void*)m_values_buffer, 0, sizeof(m_values_buffer));
|
|
|
|
return step;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Function for finding mask of touched pads.
|
|
*
|
|
* @param [in] p_instance Pointer to csense instance.
|
|
*
|
|
* @return Mask of touched pads.
|
|
*/
|
|
static uint32_t find_touched_mask(nrf_csense_instance_t const * p_instance)
|
|
{
|
|
uint32_t touched_mask = 0;
|
|
uint16_t max_value = 0;
|
|
uint16_t ratio;
|
|
nrf_csense_pad_t * p_pad;
|
|
|
|
for (p_pad = p_instance->p_nrf_csense_pad; NULL != p_pad; p_pad = p_pad->p_next_pad) // run through all pads and look for those with biggest value
|
|
{
|
|
min_or_max_update(p_instance, p_pad);
|
|
|
|
ratio = ratio_calculate(p_instance, p_pad);
|
|
if (ratio == 0)
|
|
{
|
|
return 0;
|
|
}
|
|
uint16_t val =
|
|
(uint16_t)(((uint32_t)(m_nrf_csense.raw_analog_values[p_pad->analog_input_number] -
|
|
p_instance->min_max[p_pad->pad_index].min_value) *
|
|
NRF_CSENSE_MAX_VALUE) / ratio);
|
|
m_values_buffer[p_pad->pad_index+1] = val;
|
|
|
|
if (val > max_value)
|
|
{
|
|
max_value = val;
|
|
touched_mask = (1UL << (p_pad->pad_index));
|
|
}
|
|
else if (val == max_value)
|
|
{
|
|
max_value = val;
|
|
touched_mask |= (1UL << (p_pad->pad_index));
|
|
}
|
|
}
|
|
|
|
return touched_mask;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Function for finding touched pad.
|
|
*
|
|
* If there is more than one pad connected to an analog channel this functions which one was actually touched. This is done by
|
|
* comparing values of neighboring pads.
|
|
*
|
|
* @param [in] instance Pointer to csense instance.
|
|
* @param [in] touched_mask Mask of touched pads.
|
|
*
|
|
* @return Touched pad.
|
|
*/
|
|
static uint16_t find_touched_pad(nrf_csense_instance_t const * p_instance,
|
|
uint32_t touched_mask)
|
|
{
|
|
uint8_t i;
|
|
uint8_t biggest_deviation = 0;
|
|
uint8_t temp_biggest = 0;
|
|
uint16_t pad = UINT16_MAX;
|
|
static uint16_t previous_pad = 0;
|
|
|
|
for (i = 0; i < (p_instance->number_of_pads); i++)
|
|
{
|
|
if ((1UL << i) & touched_mask)
|
|
{
|
|
temp_biggest = m_values_buffer[i];
|
|
temp_biggest += m_values_buffer[i + 2];
|
|
|
|
if ((i != 0) && (i != ((p_instance->number_of_pads-1))))
|
|
{
|
|
temp_biggest /= 2;
|
|
}
|
|
|
|
if ((temp_biggest > NRF_CSENSE_PAD_DEVIATION) &&
|
|
(temp_biggest > biggest_deviation))
|
|
{
|
|
biggest_deviation = temp_biggest;
|
|
pad = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (pad == UINT16_MAX)
|
|
{
|
|
pad = previous_pad;
|
|
}
|
|
else
|
|
{
|
|
previous_pad = pad;
|
|
}
|
|
|
|
return pad;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Function for finding touched step.
|
|
*
|
|
* @param [in] instance Pointer to csense instance.
|
|
*
|
|
* @return Detected touched step.
|
|
*/
|
|
static uint16_t find_touched_step(nrf_csense_instance_t * p_instance)
|
|
{
|
|
uint32_t touched_mask = 0;
|
|
uint16_t pad = 0;
|
|
uint16_t step;
|
|
|
|
touched_mask = find_touched_mask(p_instance);
|
|
|
|
if (touched_mask == 0)
|
|
{
|
|
return UINT16_MAX;
|
|
}
|
|
|
|
if ((touched_mask & (-(int32_t)touched_mask)) == touched_mask) // Check if there is only one pad with greatest value.
|
|
{
|
|
pad = 31 - __CLZ(touched_mask);
|
|
}
|
|
else
|
|
{
|
|
pad = find_touched_pad(p_instance, touched_mask);
|
|
}
|
|
|
|
step = calculate_step(p_instance, pad);
|
|
return step;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Event handler for csense.
|
|
*
|
|
* param [in] p_event_struct Pointer to event structure.
|
|
*/
|
|
static void csense_event_handler(nrf_drv_csense_evt_t * p_event_struct)
|
|
{
|
|
nrf_csense_evt_t event;
|
|
static uint16_t prev_analog_values[MAX_ANALOG_INPUTS];
|
|
bool touched = false;
|
|
nrf_csense_instance_t * instance;
|
|
uint8_t i;
|
|
|
|
if ((m_nrf_csense.enabled_analog_channels_mask & (1UL << (p_event_struct->analog_channel))) == 0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
m_nrf_csense.raw_analog_values[p_event_struct->analog_channel] = p_event_struct->read_value;
|
|
|
|
if (nrf_drv_csense_is_busy())
|
|
{
|
|
return;
|
|
}
|
|
|
|
for (instance = mp_nrf_csense_instance_head; instance != NULL;
|
|
instance = instance->p_next_instance) // run through all instances
|
|
{
|
|
if (instance->is_active)
|
|
{
|
|
event.p_instance = instance;
|
|
nrf_csense_pad_t * p_pad = instance->p_nrf_csense_pad;
|
|
|
|
for (i = 0; i < MAX_ANALOG_INPUTS; i++)
|
|
{
|
|
if ((m_nrf_csense.raw_analog_values[i] <
|
|
(prev_analog_values[i] - NRF_CSENSE_PAD_HYSTERESIS)) ||
|
|
(m_nrf_csense.raw_analog_values[i] >
|
|
(prev_analog_values[i] + NRF_CSENSE_PAD_HYSTERESIS)))
|
|
{
|
|
touched = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (touched)
|
|
{
|
|
touched = false;
|
|
|
|
for (p_pad = instance->p_nrf_csense_pad; p_pad != NULL;
|
|
p_pad = p_pad->p_next_pad)
|
|
{
|
|
if (m_nrf_csense.raw_analog_values[p_pad->analog_input_number] >
|
|
p_pad->threshold)
|
|
{
|
|
touched = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
continue;
|
|
}
|
|
|
|
// Specify the event
|
|
if ((instance->is_touched) && touched)
|
|
{
|
|
// dragged
|
|
if (instance->number_of_pads > 1)
|
|
{
|
|
event.params.slider.step = find_touched_step(instance);
|
|
event.nrf_csense_evt_type = NRF_CSENSE_SLIDER_EVT_DRAGGED;
|
|
|
|
m_nrf_csense.event_handler(&event);
|
|
}
|
|
}
|
|
else if ((!(instance->is_touched)) && touched)
|
|
{
|
|
// pressed
|
|
if (instance->number_of_pads > 1)
|
|
{
|
|
event.params.slider.step = find_touched_step(instance);
|
|
event.nrf_csense_evt_type = NRF_CSENSE_SLIDER_EVT_PRESSED;
|
|
}
|
|
else
|
|
{
|
|
event.nrf_csense_evt_type = NRF_CSENSE_BTN_EVT_PRESSED;
|
|
}
|
|
instance->is_touched = true;
|
|
|
|
m_nrf_csense.event_handler(&event);
|
|
}
|
|
else if ((instance->is_touched) && (!touched))
|
|
{
|
|
// released
|
|
if (instance->number_of_pads > 1)
|
|
{
|
|
event.params.slider.step = find_touched_step(instance);
|
|
event.nrf_csense_evt_type = NRF_CSENSE_SLIDER_EVT_RELEASED;
|
|
}
|
|
else
|
|
{
|
|
event.nrf_csense_evt_type = NRF_CSENSE_BTN_EVT_RELEASED;
|
|
}
|
|
instance->is_touched = false;
|
|
|
|
m_nrf_csense.event_handler(&event);
|
|
}
|
|
else
|
|
{
|
|
// nothing changed
|
|
}
|
|
}
|
|
|
|
touched = false;
|
|
}
|
|
|
|
memset(m_values_buffer, 0, sizeof(m_values_buffer));
|
|
memcpy(prev_analog_values, m_nrf_csense.raw_analog_values,
|
|
sizeof(m_nrf_csense.raw_analog_values));
|
|
}
|
|
|
|
|
|
ret_code_t nrf_csense_init(nrf_csense_event_handler_t event_handler,
|
|
uint32_t ticks)
|
|
{
|
|
ASSERT(event_handler != NULL);
|
|
ASSERT(m_nrf_csense.state == NRFX_DRV_STATE_UNINITIALIZED);
|
|
|
|
ret_code_t err_code;
|
|
|
|
static const nrf_drv_csense_config_t m_csense_config =
|
|
{
|
|
.output_pin = NRF_CSENSE_OUTPUT_PIN
|
|
};
|
|
|
|
m_nrf_csense.event_handler = event_handler;
|
|
m_nrf_csense.ticks = ticks;
|
|
mp_nrf_csense_instance_head = NULL;
|
|
|
|
err_code = app_timer_create(&nrf_csense_timer, APP_TIMER_MODE_REPEATED, csense_timer_handler);
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return err_code;
|
|
}
|
|
|
|
err_code = nrf_drv_csense_init(&m_csense_config, csense_event_handler);
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return err_code;
|
|
}
|
|
|
|
m_nrf_csense.state = NRFX_DRV_STATE_INITIALIZED;
|
|
|
|
return NRF_SUCCESS;
|
|
}
|
|
|
|
|
|
ret_code_t nrf_csense_uninit(void)
|
|
{
|
|
ASSERT(m_nrf_csense.state != NRFX_DRV_STATE_UNINITIALIZED);
|
|
|
|
ret_code_t err_code;
|
|
nrf_csense_instance_t ** pp_instance = &mp_nrf_csense_instance_head;
|
|
|
|
err_code = nrf_drv_csense_uninit();
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return err_code;
|
|
}
|
|
|
|
if (m_nrf_csense.enabled_analog_channels_mask != 0)
|
|
{
|
|
err_code = app_timer_stop(nrf_csense_timer);
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return err_code;
|
|
}
|
|
}
|
|
|
|
while ((*pp_instance) != NULL)
|
|
{
|
|
nrf_csense_instance_t ** pp_instance_next = (&(*pp_instance)->p_next_instance);
|
|
(*pp_instance) = NULL;
|
|
pp_instance = pp_instance_next;
|
|
}
|
|
|
|
memset((void *)&m_nrf_csense, 0, sizeof(nrf_csense_t));
|
|
|
|
m_nrf_csense.state = NRFX_DRV_STATE_UNINITIALIZED;
|
|
|
|
|
|
return NRF_SUCCESS;
|
|
}
|
|
|
|
ret_code_t nrf_csense_add(nrf_csense_instance_t * const p_instance)
|
|
{
|
|
ASSERT(m_nrf_csense.state != NRFX_DRV_STATE_UNINITIALIZED);
|
|
ASSERT(p_instance->p_next_instance == NULL);
|
|
ASSERT(p_instance != NULL);
|
|
|
|
ret_code_t err_code;
|
|
|
|
nrf_csense_instance_t ** pp_instance = &mp_nrf_csense_instance_head;
|
|
|
|
while ((*pp_instance) != NULL)
|
|
{
|
|
ASSERT((*pp_instance) != p_instance);
|
|
pp_instance = &((*pp_instance)->p_next_instance);
|
|
}
|
|
|
|
*pp_instance = p_instance;
|
|
|
|
err_code = nrf_csense_enable(p_instance);
|
|
return err_code;
|
|
}
|
|
|
|
ret_code_t nrf_csense_enable(nrf_csense_instance_t * const p_instance)
|
|
{
|
|
ASSERT(m_nrf_csense.state != NRFX_DRV_STATE_UNINITIALIZED);
|
|
ASSERT(p_instance != NULL);
|
|
|
|
ret_code_t err_code;
|
|
nrf_csense_pad_t const * p_pad;
|
|
uint8_t analog_channels_mask = 0;
|
|
|
|
if (m_nrf_csense.enabled_analog_channels_mask == 0)
|
|
{
|
|
err_code = app_timer_start(nrf_csense_timer, m_nrf_csense.ticks, NULL);
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return err_code;
|
|
}
|
|
}
|
|
|
|
p_instance->is_active = true;
|
|
|
|
for (p_pad = p_instance->p_nrf_csense_pad; p_pad != NULL; p_pad = p_pad->p_next_pad)
|
|
{
|
|
p_instance->min_max[p_pad->pad_index].min_value = UINT16_MAX;
|
|
|
|
// If channel was already enabled skip it.
|
|
if ((m_nrf_csense.enabled_analog_channels_mask & (1UL << (p_pad->analog_input_number))) == 0)
|
|
{
|
|
analog_channels_mask |= (1UL << (p_pad->analog_input_number));
|
|
m_nrf_csense.enabled_analog_channels_mask |= (1UL << (p_pad->analog_input_number));
|
|
}
|
|
}
|
|
|
|
m_nrf_csense.state = NRFX_DRV_STATE_POWERED_ON;
|
|
nrf_drv_csense_channels_enable(analog_channels_mask);
|
|
|
|
return NRF_SUCCESS;
|
|
}
|
|
|
|
|
|
ret_code_t nrf_csense_disable(nrf_csense_instance_t * const p_instance)
|
|
{
|
|
ASSERT(m_nrf_csense.state == NRFX_DRV_STATE_POWERED_ON);
|
|
|
|
ret_code_t err_code;
|
|
nrf_csense_instance_t * p_instance_temp = mp_nrf_csense_instance_head;
|
|
nrf_csense_pad_t const * p_pad;
|
|
uint8_t channels_mask = 0;
|
|
uint8_t instance_channels_mask = 0;
|
|
|
|
for (p_instance_temp = mp_nrf_csense_instance_head; p_instance_temp != NULL;
|
|
p_instance_temp = p_instance_temp->p_next_instance)
|
|
{
|
|
for (p_pad = p_instance_temp->p_nrf_csense_pad; p_pad != NULL; p_pad = p_pad->p_next_pad)
|
|
{
|
|
if (p_instance_temp == p_instance)
|
|
{
|
|
instance_channels_mask |= (1UL << (p_pad->analog_input_number));
|
|
p_instance->is_active = false;
|
|
}
|
|
else
|
|
{
|
|
channels_mask |= (1UL << (p_pad->analog_input_number));
|
|
}
|
|
}
|
|
}
|
|
|
|
nrf_drv_csense_channels_disable((~channels_mask) & instance_channels_mask);
|
|
|
|
m_nrf_csense.enabled_analog_channels_mask = channels_mask;
|
|
|
|
if (m_nrf_csense.enabled_analog_channels_mask == 0)
|
|
{
|
|
err_code = app_timer_stop(nrf_csense_timer);
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return err_code;
|
|
}
|
|
m_nrf_csense.state = NRFX_DRV_STATE_INITIALIZED;
|
|
}
|
|
|
|
return NRF_SUCCESS;
|
|
}
|
|
|
|
|
|
ret_code_t nrf_csense_ticks_set(uint32_t ticks)
|
|
{
|
|
ASSERT(m_nrf_csense.state != NRFX_DRV_STATE_UNINITIALIZED);
|
|
|
|
ret_code_t err_code;
|
|
|
|
if (nrf_drv_csense_is_busy())
|
|
{
|
|
return NRF_ERROR_BUSY;
|
|
}
|
|
|
|
m_nrf_csense.ticks = ticks;
|
|
|
|
if (m_nrf_csense.state == NRFX_DRV_STATE_POWERED_ON)
|
|
{
|
|
err_code = app_timer_stop(nrf_csense_timer);
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return err_code;
|
|
}
|
|
|
|
err_code = app_timer_start(nrf_csense_timer, ticks, NULL);
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return err_code;
|
|
}
|
|
}
|
|
|
|
return NRF_SUCCESS;
|
|
}
|
|
|
|
|
|
ret_code_t nrf_csense_steps_set(nrf_csense_instance_t * const p_instance, uint16_t steps)
|
|
{
|
|
if (p_instance->is_active)
|
|
{
|
|
return NRF_ERROR_INVALID_STATE;
|
|
}
|
|
|
|
p_instance->steps = steps;
|
|
|
|
return NRF_SUCCESS;
|
|
}
|
|
#endif //NRF_MODULE_ENABLED(NRF_CSENSE)
|