spider-bot/fw/nrf52/nrf5_sdk/components/libraries/button/app_button.c

350 lines
11 KiB
C

/**
* Copyright (c) 2012 - 2019, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(BUTTON)
#include "app_button.h"
#include "app_timer.h"
#include "app_error.h"
#include "nrf_drv_gpiote.h"
#include "nrf_assert.h"
#define NRF_LOG_MODULE_NAME app_button
#if APP_BUTTON_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL APP_BUTTON_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR APP_BUTTON_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR APP_BUTTON_CONFIG_DEBUG_COLOR
#else //APP_BUTTON_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL 0
#endif //APP_BUTTON_CONFIG_LOG_ENABLED
#include "nrf_log.h"
NRF_LOG_MODULE_REGISTER();
/*
* For each pin state machine is used. Since GPIOTE PORT event is common for all pin is might be
* missed. Module relies on interrupt from GPIOTE only to active periodic app_timer in which pin
* is sampled. Timer is stopped when there is no active buttons (all buttons are in idle state).
*
* Transition to the new state is based on currently sampled button value. State machine has
* following transitions:
*
* -----------------------------------------------------
* | value | current state | new state |
* |---------------------------------------------------|
* | 0 | IDLE | IDLE |
* | 1 | IDLE | PRESS_ARMED |
* | 0 | PRESS_ARMED | IDLE |
* | 1 | PRESS_ARMED | PRESS_DETECTED |
* | 1 | PRESS_DETECTED | PRESSED (push event) |
* | 0 | PRESS_DETECTED | PRESS_ARMED |
* | 0 | PRESSED | RELEASE_DETECTED |
* | 1 | PRESSED | PRESSED |
* | 0 | RELEASE_DETECTED | IDLE (release event) |
* | 1 | RELEASE_DETECTED | PRESSED |
* -----------------------------------------------------
*
*/
static app_button_cfg_t const * mp_buttons = NULL; /**< Button configuration. */
static uint8_t m_button_count; /**< Number of configured buttons. */
static uint32_t m_detection_delay; /**< Delay before a button is reported as pushed. */
APP_TIMER_DEF(m_detection_delay_timer_id); /**< Polling timer id. */
static uint64_t m_pin_active;
#define BIT_PER_PIN 4
#define PINS 32*GPIO_COUNT
STATIC_ASSERT(BIT_PER_PIN == 4);
static uint8_t m_pin_states[PINS*BIT_PER_PIN/8];
typedef enum {
BTN_IDLE,
BTN_PRESS_ARMED,
BTN_PRESS_DETECTED,
BTN_PRESSED,
BTN_RELEASE_DETECTED
} btn_state_t;
/* Retrieve given pin state. States are stored in pairs (4 bit per pin) in byte array. */
static btn_state_t state_get(uint8_t pin)
{
uint8_t pair_state = m_pin_states[pin >> 1];
uint8_t state = (pin & 0x1) ? (pair_state >> BIT_PER_PIN) : (pair_state & 0x0F);
return (btn_state_t)state;
}
/* Set pin state. */
static void state_set(uint8_t pin, btn_state_t state)
{
uint8_t mask = (pin & 1) ? 0x0F : 0xF0;
uint8_t state_mask = (pin & 1) ?
((uint8_t)state << BIT_PER_PIN) : (uint8_t)state;
m_pin_states[pin >> 1] &= mask;
m_pin_states[pin >> 1] |= state_mask;
}
/* Find configuration structure for given pin. */
static app_button_cfg_t const * button_get(uint8_t pin)
{
for (int i = 0; i < m_button_count; i++)
{
app_button_cfg_t const * p_btn = &mp_buttons[i];
if (pin == p_btn->pin_no) {
return p_btn;
}
}
/* If button is not found then configuration is wrong. */
ASSERT(false);
return NULL;
}
static void usr_event(uint8_t pin, uint8_t type)
{
app_button_cfg_t const * p_btn = button_get(pin);
if (p_btn && p_btn->button_handler)
{
NRF_LOG_DEBUG("Pin %d %s", pin, (type == APP_BUTTON_PUSH) ? "pressed" : "released");
p_btn->button_handler(pin, type);
}
}
/* State machine processing. */
void evt_handle(uint8_t pin, uint8_t value)
{
switch(state_get(pin))
{
case BTN_IDLE:
if (value)
{
NRF_LOG_DEBUG("Pin %d idle->armed", pin);
state_set(pin, BTN_PRESS_ARMED);
CRITICAL_REGION_ENTER();
m_pin_active |= 1ULL << pin;
CRITICAL_REGION_EXIT();
}
else
{
/* stay in IDLE */
}
break;
case BTN_PRESS_ARMED:
state_set(pin, value ? BTN_PRESS_DETECTED : BTN_IDLE);
NRF_LOG_DEBUG("Pin %d armed->%s", pin, value ? "detected" : "idle");
break;
case BTN_PRESS_DETECTED:
if (value)
{
state_set(pin, BTN_PRESSED);
usr_event(pin, APP_BUTTON_PUSH);
}
else
{
state_set(pin, BTN_PRESS_ARMED);
}
NRF_LOG_DEBUG("Pin %d detected->%s", pin, value ? "pressed" : "armed");
break;
case BTN_PRESSED:
if (value == 0)
{
NRF_LOG_DEBUG("Pin %d pressed->release_detected", pin);
state_set(pin, BTN_RELEASE_DETECTED);
}
else
{
/* stay in pressed */
}
break;
case BTN_RELEASE_DETECTED:
if (value)
{
state_set(pin, BTN_PRESSED);
}
else
{
state_set(pin, BTN_IDLE);
usr_event(pin, APP_BUTTON_RELEASE);
CRITICAL_REGION_ENTER();
m_pin_active &= ~(1ULL << pin);
CRITICAL_REGION_EXIT();
}
NRF_LOG_DEBUG("Pin %d release_detected->%s", pin, value ? "pressed" : "idle");
break;
}
}
static void timer_start(void)
{
uint32_t err_code = app_timer_start(m_detection_delay_timer_id, m_detection_delay/2, NULL);
if (err_code != NRF_SUCCESS)
{
NRF_LOG_WARNING("Failed to start app_timer (err:%d)", err_code);
}
}
static void detection_delay_timeout_handler(void * p_context)
{
for (int i = 0; i < m_button_count; i++)
{
app_button_cfg_t const * p_btn = &mp_buttons[i];
bool is_set = nrf_drv_gpiote_in_is_set(p_btn->pin_no);
bool is_active = !((p_btn->active_state == APP_BUTTON_ACTIVE_HIGH) ^ is_set);
evt_handle(p_btn->pin_no, is_active);
}
if (m_pin_active)
{
timer_start();
}
else
{
NRF_LOG_DEBUG("No active buttons, stopping timer");
}
}
/* GPIOTE event is used only to start periodic timer when first button is activated. */
static void gpiote_event_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action)
{
app_button_cfg_t const * p_btn = button_get(pin);
bool is_set = nrf_drv_gpiote_in_is_set(p_btn->pin_no);
bool is_active = !((p_btn->active_state == APP_BUTTON_ACTIVE_HIGH) ^ is_set);
/* If event indicates that pin is active and no other pin is active start the timer. All
* action happens in timeout event.
*/
if (is_active && (m_pin_active == 0))
{
NRF_LOG_DEBUG("First active button, starting periodic timer");
timer_start();
}
}
uint32_t app_button_init(app_button_cfg_t const * p_buttons,
uint8_t button_count,
uint32_t detection_delay)
{
uint32_t err_code;
if (detection_delay < 2*APP_TIMER_MIN_TIMEOUT_TICKS)
{
return NRF_ERROR_INVALID_PARAM;
}
if (!nrf_drv_gpiote_is_init())
{
err_code = nrf_drv_gpiote_init();
VERIFY_SUCCESS(err_code);
}
/* Save configuration. */
mp_buttons = p_buttons;
m_button_count = button_count;
m_detection_delay = detection_delay;
memset(m_pin_states, 0, sizeof(m_pin_states));
m_pin_active = 0;
while (button_count--)
{
app_button_cfg_t const * p_btn = &p_buttons[button_count];
#if defined(BUTTON_HIGH_ACCURACY_ENABLED) && (BUTTON_HIGH_ACCURACY_ENABLED == 1)
nrf_drv_gpiote_in_config_t config = GPIOTE_CONFIG_IN_SENSE_TOGGLE(p_btn->hi_accuracy);
#else
nrf_drv_gpiote_in_config_t config = GPIOTE_CONFIG_IN_SENSE_TOGGLE(false);
#endif
config.pull = p_btn->pull_cfg;
err_code = nrf_drv_gpiote_in_init(p_btn->pin_no, &config, gpiote_event_handler);
VERIFY_SUCCESS(err_code);
}
/* Create polling timer. */
return app_timer_create(&m_detection_delay_timer_id,
APP_TIMER_MODE_SINGLE_SHOT,
detection_delay_timeout_handler);
}
uint32_t app_button_enable(void)
{
ASSERT(mp_buttons);
uint32_t i;
for (i = 0; i < m_button_count; i++)
{
nrf_drv_gpiote_in_event_enable(mp_buttons[i].pin_no, true);
}
return NRF_SUCCESS;
}
uint32_t app_button_disable(void)
{
ASSERT(mp_buttons);
uint32_t i;
for (i = 0; i < m_button_count; i++)
{
nrf_drv_gpiote_in_event_disable(mp_buttons[i].pin_no);
}
CRITICAL_REGION_ENTER();
m_pin_active = 0;
CRITICAL_REGION_EXIT();
/* Make sure polling timer is not running. */
return app_timer_stop(m_detection_delay_timer_id);
}
bool app_button_is_pushed(uint8_t button_id)
{
ASSERT(button_id <= m_button_count);
ASSERT(mp_buttons != NULL);
app_button_cfg_t const * p_btn = &mp_buttons[button_id];
bool is_set = nrf_drv_gpiote_in_is_set(p_btn->pin_no);
return !(is_set ^ (p_btn->active_state == APP_BUTTON_ACTIVE_HIGH));
}
#endif //NRF_MODULE_ENABLED(BUTTON)