spider-bot/fw/nrf52/nrf5_sdk/components/libraries/timer/drv_rtc.c

359 lines
12 KiB
C

/**
* Copyright (c) 2018 - 2019, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <nrfx.h>
#include <nrf_delay.h>
#include <drv_rtc.h>
/* Module is integral part of app_timer implementation. */
#define NRF_LOG_MODULE_NAME app_timer
#include <nrf_log.h>
#define EVT_TO_STR(event) \
(event == NRF_RTC_EVENT_TICK ? "NRF_RTC_EVENT_TICK" : \
(event == NRF_RTC_EVENT_OVERFLOW ? "NRF_RTC_EVENT_OVERFLOW" : \
(event == NRF_RTC_EVENT_COMPARE_0 ? "NRF_RTC_EVENT_COMPARE_0" : \
(event == NRF_RTC_EVENT_COMPARE_1 ? "NRF_RTC_EVENT_COMPARE_1" : \
(event == NRF_RTC_EVENT_COMPARE_2 ? "NRF_RTC_EVENT_COMPARE_2" : \
(event == NRF_RTC_EVENT_COMPARE_3 ? "NRF_RTC_EVENT_COMPARE_3" : \
"UNKNOWN EVENT"))))))
#if defined ( __ICCARM__ )
/* IAR gives warning for offsetof with non-constant expression.*/
#define CC_IDX_TO_CC_EVENT(_cc) \
((nrf_rtc_event_t)(offsetof(NRF_RTC_Type, EVENTS_COMPARE[0]) + sizeof(uint32_t)*_cc))
#else
#define CC_IDX_TO_CC_EVENT(_cc) \
((nrf_rtc_event_t)(offsetof(NRF_RTC_Type, EVENTS_COMPARE[_cc])))
#endif
/**@brief RTC driver instance control block structure. */
typedef struct
{
drv_rtc_t const * p_instance;
nrfx_drv_state_t state; /**< Instance state. */
} drv_rtc_cb_t;
// User callbacks local storage.
static drv_rtc_handler_t m_handlers[DRV_RTC_ENABLED_COUNT];
static drv_rtc_cb_t m_cb[DRV_RTC_ENABLED_COUNT];
// According to Produce Specification RTC may not trigger COMPARE event if CC value set is equal to
// COUNTER value or COUNTER+1.
#define COUNTER_TO_CC_MIN_DISTANCE 2
ret_code_t drv_rtc_init(drv_rtc_t const * const p_instance,
drv_rtc_config_t const * p_config,
drv_rtc_handler_t handler)
{
ASSERT(p_instance);
ASSERT(p_config);
ASSERT(handler);
ret_code_t err_code;
m_handlers[p_instance->instance_id] = handler;
if (m_cb[p_instance->instance_id].state != NRFX_DRV_STATE_UNINITIALIZED)
{
err_code = NRF_ERROR_INVALID_STATE;
NRF_LOG_WARNING("RTC instance already initialized.");
return err_code;
}
nrf_rtc_prescaler_set(p_instance->p_reg, p_config->prescaler);
NRFX_IRQ_PRIORITY_SET(p_instance->irq, p_config->interrupt_priority);
NRFX_IRQ_ENABLE(p_instance->irq);
m_cb[p_instance->instance_id].state = NRFX_DRV_STATE_INITIALIZED;
m_cb[p_instance->instance_id].p_instance = p_instance;
err_code = NRF_SUCCESS;
NRF_LOG_INFO("RTC: initialized.");
return err_code;
}
void drv_rtc_uninit(drv_rtc_t const * const p_instance)
{
ASSERT(p_instance);
uint32_t mask = NRF_RTC_INT_TICK_MASK |
NRF_RTC_INT_OVERFLOW_MASK |
NRF_RTC_INT_COMPARE0_MASK |
NRF_RTC_INT_COMPARE1_MASK |
NRF_RTC_INT_COMPARE2_MASK |
NRF_RTC_INT_COMPARE3_MASK;
ASSERT(m_cb[p_instance->instance_id].state != NRFX_DRV_STATE_UNINITIALIZED);
NRFX_IRQ_DISABLE(p_instance->irq);
drv_rtc_stop(p_instance);
nrf_rtc_event_disable(p_instance->p_reg, mask);
nrf_rtc_int_disable(p_instance->p_reg, mask);
m_cb[p_instance->instance_id].state = NRFX_DRV_STATE_UNINITIALIZED;
NRF_LOG_INFO("RTC: Uninitialized.");
}
void drv_rtc_start(drv_rtc_t const * const p_instance)
{
ASSERT(p_instance);
nrf_rtc_task_trigger(p_instance->p_reg, NRF_RTC_TASK_START);
}
void drv_rtc_stop(drv_rtc_t const * const p_instance)
{
ASSERT(p_instance);
nrf_rtc_task_trigger(p_instance->p_reg, NRF_RTC_TASK_STOP);
}
void drv_rtc_compare_set(drv_rtc_t const * const p_instance,
uint32_t cc,
uint32_t abs_value,
bool irq_enable)
{
ASSERT(p_instance);
nrf_rtc_int_t cc_int_mask = (nrf_rtc_int_t)(NRF_RTC_INT_COMPARE0_MASK << cc);
nrf_rtc_event_t cc_evt = CC_IDX_TO_CC_EVENT(cc);
abs_value &= RTC_COUNTER_COUNTER_Msk;
nrf_rtc_int_disable(p_instance->p_reg, cc_int_mask);
nrf_rtc_event_disable(p_instance->p_reg, cc_int_mask);
nrf_rtc_event_clear(p_instance->p_reg, cc_evt);
nrf_rtc_cc_set(p_instance->p_reg, cc,abs_value);
nrf_rtc_event_enable(p_instance->p_reg, cc_int_mask);
if (irq_enable)
{
nrf_rtc_int_enable(p_instance->p_reg, cc_int_mask);
}
}
static void evt_enable(drv_rtc_t const * const p_instance, uint32_t mask, bool irq_enable)
{
ASSERT(p_instance);
nrf_rtc_event_enable(p_instance->p_reg, mask);
if (irq_enable)
{
nrf_rtc_int_enable(p_instance->p_reg, mask);
}
}
static void evt_disable(drv_rtc_t const * const p_instance, uint32_t mask)
{
ASSERT(p_instance);
nrf_rtc_event_disable(p_instance->p_reg, mask);
nrf_rtc_int_disable(p_instance->p_reg, mask);
}
static bool evt_pending(drv_rtc_t const * const p_instance, nrf_rtc_event_t event)
{
ASSERT(p_instance);
if (nrf_rtc_event_pending(p_instance->p_reg, event))
{
nrf_rtc_event_clear(p_instance->p_reg, event);
return true;
}
return false;
}
static uint32_t ticks_sub(uint32_t a, uint32_t b)
{
return (a - b) & RTC_COUNTER_COUNTER_Msk;
}
ret_code_t drv_rtc_windowed_compare_set(drv_rtc_t const * const p_instance,
uint32_t cc,
uint32_t abs_value,
uint32_t safe_window)
{
ASSERT(p_instance);
uint32_t prev_cc_set;
uint32_t now;
uint32_t diff;
nrf_rtc_int_t cc_int_mask = (nrf_rtc_int_t)(NRF_RTC_INT_COMPARE0_MASK << cc);
nrf_rtc_event_t cc_evt = CC_IDX_TO_CC_EVENT(cc);;
abs_value &=RTC_COUNTER_COUNTER_Msk;
evt_disable(p_instance, cc_int_mask);
/* First handle potential prefiring caused by CC being set to next tick. Even if CC is
* overwritten it may happen that event will be generated for previous CC in next tick.
* Following algorith is applied:
* - read previous CC
* - write current counter value to CC (furtherest in future)
* - if previous CC was in one tick from now wait half of the 32k tick and clear event which
* may be set. Half tick delay is used because CC is latched in the middle of the 32k tick.
*/
now = nrf_rtc_counter_get(p_instance->p_reg);
prev_cc_set = nrf_rtc_cc_get(p_instance->p_reg, cc);
nrf_rtc_cc_set(p_instance->p_reg, cc, now);
nrf_rtc_event_clear(p_instance->p_reg, cc_evt);
if (ticks_sub(prev_cc_set, now) == 1)
{
nrf_delay_us(16);
nrf_rtc_event_clear(p_instance->p_reg, cc_evt);
}
now = nrf_rtc_counter_get(p_instance->p_reg);
diff = ticks_sub(abs_value, now);
nrf_rtc_event_enable(p_instance->p_reg, cc_int_mask);
/* Setting CC for +1 from now may not generate event. In that case set CC+2 and check if counter
* changed during that process. If changed it means that 1 tick expired. */
if (diff == 1)
{
nrf_rtc_cc_set(p_instance->p_reg, cc, abs_value + 1);
nrf_delay_us(16);
if (now != nrf_rtc_counter_get(p_instance->p_reg))
{
/* one tick elapsed already. */
return NRF_ERROR_TIMEOUT;
}
} else {
nrf_rtc_cc_set(p_instance->p_reg, cc, abs_value);
now = nrf_rtc_counter_get(p_instance->p_reg);
diff = ticks_sub(abs_value - 1, now);
/* Check if counter equals cc value or is behind in the safe window. If yes it means that
* CC expired. */
if (diff > (RTC_COUNTER_COUNTER_Msk - safe_window))
{
return NRF_ERROR_TIMEOUT;
}
else if (diff == 0)
{
/* If cc value == counter + 1, it may hit +1 case. */
nrf_rtc_cc_set(p_instance->p_reg, cc, abs_value + 1);
if (now != nrf_rtc_counter_get(p_instance->p_reg))
{
/* one tick elapsed already. */
return NRF_ERROR_TIMEOUT;
}
}
}
evt_enable(p_instance, cc_int_mask, true);
return NRF_SUCCESS;
}
void drv_rtc_overflow_enable(drv_rtc_t const * const p_instance, bool irq_enable)
{
evt_enable(p_instance, NRF_RTC_INT_OVERFLOW_MASK, irq_enable);
}
void drv_rtc_overflow_disable(drv_rtc_t const * const p_instance)
{
evt_disable(p_instance, NRF_RTC_INT_OVERFLOW_MASK);
}
bool drv_rtc_overflow_pending(drv_rtc_t const * const p_instance)
{
return evt_pending(p_instance, NRF_RTC_EVENT_OVERFLOW);
}
void drv_rtc_tick_enable(drv_rtc_t const * const p_instance, bool irq_enable)
{
evt_enable(p_instance, NRF_RTC_INT_TICK_MASK, irq_enable);
}
void drv_rtc_tick_disable(drv_rtc_t const * const p_instance)
{
evt_disable(p_instance, NRF_RTC_INT_TICK_MASK);
}
bool drv_rtc_tick_pending(drv_rtc_t const * const p_instance)
{
return evt_pending(p_instance, NRF_RTC_EVENT_TICK);
}
void drv_rtc_compare_enable(drv_rtc_t const * const p_instance,
uint32_t cc,
bool irq_enable)
{
evt_enable(p_instance, (uint32_t)NRF_RTC_INT_COMPARE0_MASK << cc, irq_enable);
}
void drv_rtc_compare_disable(drv_rtc_t const * const p_instance, uint32_t cc)
{
evt_disable(p_instance, (uint32_t)NRF_RTC_INT_COMPARE0_MASK << cc);
}
bool drv_rtc_compare_pending(drv_rtc_t const * const p_instance, uint32_t cc)
{
nrf_rtc_event_t cc_evt = CC_IDX_TO_CC_EVENT(cc);
return evt_pending(p_instance, cc_evt);
}
uint32_t drv_rtc_counter_get(drv_rtc_t const * const p_instance)
{
return nrf_rtc_counter_get(p_instance->p_reg);
}
void drv_rtc_irq_trigger(drv_rtc_t const * const p_instance)
{
NVIC_SetPendingIRQ(p_instance->irq);
}
#define drv_rtc_rtc_0_irq_handler RTC0_IRQHandler
#define drv_rtc_rtc_1_irq_handler RTC1_IRQHandler
#define drv_rtc_rtc_2_irq_handler RTC2_IRQHandler
#if defined(APP_TIMER_V2_RTC0_ENABLED)
void drv_rtc_rtc_0_irq_handler(void)
{
m_handlers[DRV_RTC_RTC0_INST_IDX](m_cb[DRV_RTC_RTC0_INST_IDX].p_instance);
}
#endif
#if defined(APP_TIMER_V2_RTC1_ENABLED)
void drv_rtc_rtc_1_irq_handler(void)
{
m_handlers[DRV_RTC_RTC1_INST_IDX](m_cb[DRV_RTC_RTC1_INST_IDX].p_instance);
}
#endif
#if defined(APP_TIMER_V2_RTC2_ENABLED)
void drv_rtc_rtc_2_irq_handler(void)
{
m_handlers[DRV_RTC_RTC2_INST_IDX](m_cb[DRV_RTC_RTC2_INST_IDX].p_instance);
}
#endif