spider-bot/fw/nrf52/nrf5_sdk/components/drivers_ext/sx1509b/sx1509b.c

1003 lines
36 KiB
C

/**
* Copyright (c) 2017 - 2019, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sx1509b.h"
static sx1509b_instance_t * m_p_instances;
static uint8_t m_max_instance_count;
static uint8_t m_inst_count;
#define RETURN_IF_ERR(_err) \
if (_err != NRF_SUCCESS)\
{ \
return _err; \
}
/**
* ===============================================================================================
* @brief General expander utility functions.
*/
void sx1509b_init(sx1509b_instance_t * p_instances, uint8_t count)
{
ASSERT(p_instances != NULL);
m_p_instances = p_instances;
m_max_instance_count = count;
m_inst_count = 0;
}
static void sx1509b_default_cfg_set(uint8_t instance_num)
{
m_p_instances[instance_num].start_addr = 0x00;
for (uint8_t i = SX1509B_REG_INPUT_DISABLE_B; i < SX1509B_REG_DIR_B; i++)
{
m_p_instances[instance_num].registers[i] = 0;
}
for (uint8_t i = SX1509B_REG_DIR_B; i < SX1509B_REG_SENSE_H_B; i++)
{
m_p_instances[instance_num].registers[i] = 0xFF;
}
for (uint8_t i = SX1509B_REG_SENSE_H_B; i < SX1509B_REG_KEY_DATA_1; i++)
{
m_p_instances[instance_num].registers[i] = 0;
}
m_p_instances[instance_num].registers[SX1509B_REG_KEY_DATA_1] = 0xFF;
m_p_instances[instance_num].registers[SX1509B_REG_KEY_DATA_2] = 0xFF;
m_p_instances[instance_num].registers[SX1509B_REG_MISC] = 0x01;
m_p_instances[instance_num].high_input[0] = 0;
m_p_instances[instance_num].high_input[1] = 0;
}
ret_code_t sx1509b_add_instance(nrf_twi_sensor_t * p_twi_sensor,
uint8_t sensor_address)
{
ASSERT(p_twi_sensor != NULL);
if (m_p_instances == NULL)
{
return NRF_ERROR_MODULE_NOT_INITIALIZED;
}
if (m_inst_count >= m_max_instance_count)
{
return NRF_ERROR_STORAGE_FULL;
}
m_p_instances[m_inst_count].p_sensor_data = p_twi_sensor;
m_p_instances[m_inst_count].sensor_addr = sensor_address;
sx1509b_default_cfg_set(m_inst_count);
m_inst_count++;
ret_code_t err_code = sx1509b_cfg_write(m_inst_count - 1);
return err_code;
}
ret_code_t sx1509b_cfg_write(uint8_t instance_num)
{
if (instance_num >= m_inst_count)
{
return NRF_ERROR_INVALID_PARAM;
}
ret_code_t err = nrf_twi_sensor_reg_write(m_p_instances[instance_num].p_sensor_data,
m_p_instances[instance_num].sensor_addr,
SX1509B_REG_HIGH_INPUT_B,
m_p_instances[instance_num].high_input,
2);
RETURN_IF_ERR(err);
return nrf_twi_sensor_write(m_p_instances[instance_num].p_sensor_data,
m_p_instances[instance_num].sensor_addr,
&m_p_instances[instance_num].start_addr,
SX1509B_REG_COUNT + 1,
false);
}
ret_code_t sx1509b_cfg_read(uint8_t instance_num)
{
if (instance_num >= m_inst_count)
{
return NRF_ERROR_INVALID_PARAM;
}
ret_code_t err = nrf_twi_sensor_reg_read(m_p_instances[instance_num].p_sensor_data,
m_p_instances[instance_num].sensor_addr,
SX1509B_REG_HIGH_INPUT_B,
NULL,
m_p_instances[instance_num].high_input,
2);
RETURN_IF_ERR(err);
return nrf_twi_sensor_reg_read(m_p_instances[instance_num].p_sensor_data,
m_p_instances[instance_num].sensor_addr,
m_p_instances[instance_num].start_addr,
NULL,
m_p_instances[instance_num].registers,
SX1509B_REG_COUNT);
}
ret_code_t sx1509b_clock_set(uint8_t instance_num, sx1509b_clock_t source, bool oscio_set, uint8_t oscio_freq)
{
if (instance_num >= m_inst_count)
{
return NRF_ERROR_INVALID_PARAM;
}
uint8_t * p_reg_val = &m_p_instances[instance_num].registers[SX1509B_REG_CLOCK];
NRF_TWI_SENSOR_REG_SET(*p_reg_val, SX1509B_OSC_SRC_MASK, SX1509B_OSC_SRC_POS, source);
NRF_TWI_SENSOR_REG_SET(*p_reg_val, SX1509B_OSCIO_PIN_MASK, SX1509B_OSCIO_PIN_POS, oscio_set);
NRF_TWI_SENSOR_REG_SET(*p_reg_val,
SX1509B_OSCOUT_FREQ_MASK,
SX1509B_OSCOUT_FREQ_POS,
oscio_freq);
uint8_t send_msg[] = {
SX1509B_REG_CLOCK,
*p_reg_val
};
return nrf_twi_sensor_write(m_p_instances[instance_num].p_sensor_data,
m_p_instances[instance_num].sensor_addr,
send_msg,
ARRAY_SIZE(send_msg),
true);
}
ret_code_t sx1509b_misc_set(uint8_t instance_num,
bool nreset_func,
sx1509b_debounce_t debounce_time,
bool autoclear_nint)
{
if (instance_num >= m_inst_count)
{
return NRF_ERROR_INVALID_PARAM;
}
uint8_t * p_reg_val = &m_p_instances[instance_num].registers[SX1509B_REG_MISC];
NRF_TWI_SENSOR_REG_SET(*p_reg_val, SX1509B_NRESET_PIN_MASK, SX1509B_NRESET_PIN_POS, nreset_func);
NRF_TWI_SENSOR_REG_SET(*p_reg_val,
SX1509B_AUTO_CLEAR_NINT_MASK,
SX1509B_AUTO_CLEAR_NINT_POS,
autoclear_nint);
uint8_t send_msg[] = {
SX1509B_REG_MISC,
*p_reg_val
};
ret_code_t err = nrf_twi_sensor_write(m_p_instances[instance_num].p_sensor_data,
m_p_instances[instance_num].sensor_addr,
send_msg,
ARRAY_SIZE(send_msg),
true);
RETURN_IF_ERR(err);
m_p_instances[instance_num].registers[SX1509B_REG_DEBOUNCE_CONFIG] = debounce_time;
send_msg[0] = SX1509B_REG_DEBOUNCE_CONFIG;
send_msg[1] = debounce_time;
return nrf_twi_sensor_write(m_p_instances[instance_num].p_sensor_data,
m_p_instances[instance_num].sensor_addr,
send_msg,
ARRAY_SIZE(send_msg),
true);
}
ret_code_t sx1509b_sw_reset(uint8_t instance_num)
{
if (instance_num >= m_inst_count)
{
return NRF_ERROR_INVALID_PARAM;
}
uint8_t send_msg[] = {
SX1509B_REG_SW_RESET,
SX1509B_INNER_RESET_BYTE1
};
ret_code_t err = nrf_twi_sensor_write(m_p_instances[instance_num].p_sensor_data,
m_p_instances[instance_num].sensor_addr,
send_msg,
ARRAY_SIZE(send_msg),
true);
RETURN_IF_ERR(err);
send_msg[1] = SX1509B_INNER_RESET_BYTE2;
err = nrf_twi_sensor_write(m_p_instances[instance_num].p_sensor_data,
m_p_instances[instance_num].sensor_addr,
send_msg,
ARRAY_SIZE(send_msg),
true);
RETURN_IF_ERR(err);
sx1509b_default_cfg_set(instance_num);
return err;
}
ret_code_t sx1509b_pin_cfg_reg_set(sx1509b_registers_t reg, uint32_t pin, uint8_t set)
{
if (pin >= SX1509B_INNER_PIN_COUNT * m_inst_count)
{
return NRF_ERROR_INVALID_PARAM;
}
uint8_t inst_num = pin / SX1509B_INNER_PIN_COUNT;
pin %= SX1509B_INNER_PIN_COUNT;
uint8_t * p_reg_val;
uint8_t reg_addr = reg;
uint32_t mask = 1;
if (reg_addr == SX1509B_REG_LEVEL_SHIFTER_1)
{
mask = 3; // Level shifter register parameter is 2 bits long.
pin %= SX1509B_INNER_NEXT_BANK;
pin *= 2;
}
if (reg_addr == SX1509B_REG_SENSE_H_B)
{
reg_addr += 3 - (pin / SX1509B_INNER_SENSE_REG_NUM); // Setting correct sense register
pin %= SX1509B_INNER_SENSE_REG_NUM;
pin *= 2; // Multiplying by 2 to make space for 2 bits.
mask = 3; // Sense register parameter is 2 bits long.
}
else
{
if (pin >= SX1509B_INNER_NEXT_BANK)
{
reg_addr = reg;
pin -= SX1509B_INNER_NEXT_BANK;
}
else
{
reg_addr = reg + 1; // Moving to bank A registers
}
}
p_reg_val = &m_p_instances[inst_num].registers[reg_addr];
NRF_TWI_SENSOR_REG_SET(*p_reg_val, (mask<<pin), pin, set);
uint8_t send_msg[] = {
reg_addr,
*p_reg_val
};
return nrf_twi_sensor_write(m_p_instances[inst_num].p_sensor_data,
m_p_instances[inst_num].sensor_addr,
send_msg,
ARRAY_SIZE(send_msg),
true);
}
uint8_t sx1509b_pin_cfg_reg_get(sx1509b_registers_t reg, uint32_t pin)
{
if (pin >= SX1509B_INNER_PIN_COUNT * m_inst_count)
{
return 0xFF;
}
uint8_t inst_num = pin / SX1509B_INNER_PIN_COUNT;
pin %= SX1509B_INNER_PIN_COUNT;
uint8_t * p_reg_val;
uint8_t reg_addr = reg;
uint8_t mask = 1;
if (reg_addr == SX1509B_REG_LEVEL_SHIFTER_1)
{
mask = 3; // Level shifter register parameter is 2 bits long.
pin %= SX1509B_INNER_NEXT_BANK;
pin *= 2;
}
if (reg_addr >= SX1509B_REG_SENSE_H_B && reg_addr <= SX1509B_REG_SENSE_L_A)
{
reg_addr += 3 - (pin / SX1509B_INNER_SENSE_REG_NUM); // Setting correct sense register
pin %= SX1509B_INNER_SENSE_REG_NUM;
pin *= 2; // Multiplying by 2 to make space for 2 bits.
mask = 3; // Sense register parameter is 2 bits long.
}
else
{
reg_addr += (pin >= SX1509B_INNER_NEXT_BANK) ? 0 : 1;
pin %= SX1509B_INNER_NEXT_BANK;
}
p_reg_val = &m_p_instances[inst_num].registers[reg_addr];
return NRF_TWI_SENSOR_REG_VAL_GET(*p_reg_val,(mask<<pin),pin);
}
ret_code_t sx1509b_port_cfg_reg_set(sx1509b_registers_t reg,
uint32_t port,
uint8_t mask,
sx1509b_port_op_t flag)
{
if (port >= SX1509B_INNER_PORT_COUNT * m_inst_count)
{
return NRF_ERROR_INVALID_PARAM;
}
uint8_t inst_num = port / SX1509B_INNER_PORT_COUNT;
port %= SX1509B_INNER_PORT_COUNT;
uint8_t reg_addr = reg + !port;
uint8_t * reg_val = &m_p_instances[inst_num].registers[reg_addr];
switch (flag)
{
case SX1509B_PORT_WRITE:
*reg_val = mask;
break;
case SX1509B_PORT_CLEAR:
*reg_val &= ~mask;
break;
case SX1509B_PORT_SET:
*reg_val |= mask;
break;
default:
return NRF_ERROR_INVALID_PARAM;
}
uint8_t send_msg[] = {
reg_addr,
*reg_val
};
return nrf_twi_sensor_write(m_p_instances[inst_num].p_sensor_data, m_p_instances[inst_num].sensor_addr, send_msg, ARRAY_SIZE(send_msg), true);
}
uint8_t sx1509b_port_cfg_reg_get(sx1509b_registers_t reg, uint32_t port)
{
if (port >= SX1509B_INNER_PORT_COUNT * m_inst_count)
{
return 0;
}
uint8_t inst_num = port / SX1509B_INNER_PORT_COUNT;
port %= SX1509B_INNER_PORT_COUNT;
uint8_t reg_addr = reg + !port;
return m_p_instances[inst_num].registers[reg_addr];
}
ret_code_t sx1509b_pin_data_update(nrf_twi_sensor_reg_cb_t user_cb)
{
ret_code_t err_code;
for (uint8_t i = 0; i < m_inst_count - 1; i++)
{
err_code = nrf_twi_sensor_reg_read(m_p_instances[i].p_sensor_data,
m_p_instances[i].sensor_addr,
SX1509B_REG_DATA_B,
NULL,
&m_p_instances[i].registers[SX1509B_REG_DATA_B],
2);
RETURN_IF_ERR(err_code);
}
return nrf_twi_sensor_reg_read(m_p_instances[m_inst_count - 1].p_sensor_data,
m_p_instances[m_inst_count - 1].sensor_addr,
SX1509B_REG_DATA_B,
user_cb,
&m_p_instances[m_inst_count - 1].registers[SX1509B_REG_DATA_B],
2);
}
ret_code_t sx1509b_pin_latch_update(nrf_twi_sensor_reg_cb_t user_cb)
{
ret_code_t err_code;
for (uint8_t i = 0; i < m_inst_count - 1; i++) // -1 so last read triggers callback
{
err_code = nrf_twi_sensor_reg_read(m_p_instances[i].p_sensor_data,
m_p_instances[i].sensor_addr,
SX1509B_REG_INT_SRC_B,
NULL,
&m_p_instances[i].registers[SX1509B_REG_INT_SRC_B],
2);
RETURN_IF_ERR(err_code);
}
return nrf_twi_sensor_reg_read(m_p_instances[m_inst_count - 1].p_sensor_data,
m_p_instances[m_inst_count - 1].sensor_addr,
SX1509B_REG_INT_SRC_B,
user_cb,
&m_p_instances[m_inst_count - 1].registers[SX1509B_REG_INT_SRC_B],
2);
}
ret_code_t sx1509b_pin_high_input(uint32_t pin_number, bool set)
{
if (pin_number >= SX1509B_INNER_PIN_COUNT * m_inst_count)
{
return NRF_ERROR_INVALID_PARAM;
}
uint8_t inst_num = pin_number / SX1509B_INNER_PIN_COUNT;
pin_number %= SX1509B_INNER_PIN_COUNT;
uint8_t reg_addr;
uint8_t * p_reg_val;
if (pin_number < SX1509B_INNER_NEXT_BANK)
{
reg_addr = SX1509B_REG_HIGH_INPUT_A;
p_reg_val = &m_p_instances[inst_num].high_input[1];
}
else
{
reg_addr = SX1509B_REG_HIGH_INPUT_B;
p_reg_val = &m_p_instances[inst_num].high_input[0];
pin_number -= SX1509B_INNER_NEXT_BANK;
}
NRF_TWI_SENSOR_REG_SET(*p_reg_val, (1U << pin_number), pin_number, set);
uint8_t send_msg[] = {
reg_addr,
*p_reg_val
};
return nrf_twi_sensor_write(m_p_instances[inst_num].p_sensor_data,
m_p_instances[inst_num].sensor_addr,
send_msg,
ARRAY_SIZE(send_msg),
true);
}
ret_code_t sx1509b_port_high_input(uint8_t port_num, uint8_t out_mask, sx1509b_port_op_t flag)
{
if (port_num >= SX1509B_INNER_PORT_COUNT * m_inst_count)
{
return NRF_ERROR_INVALID_PARAM;
}
uint8_t inst_num = port_num / SX1509B_INNER_PORT_COUNT;
port_num %= SX1509B_INNER_PORT_COUNT;
uint8_t reg_addr = SX1509B_REG_HIGH_INPUT_B + !port_num;
uint8_t * reg_val = &m_p_instances[inst_num].high_input[!port_num];
switch (flag)
{
case SX1509B_PORT_WRITE:
*reg_val = out_mask;
break;
case SX1509B_PORT_CLEAR:
*reg_val &= ~out_mask;
break;
case SX1509B_PORT_SET:
*reg_val |= out_mask;
break;
default:
return NRF_ERROR_INVALID_PARAM;
}
uint8_t send_msg[] = {
reg_addr,
*reg_val
};
return nrf_twi_sensor_write(m_p_instances[inst_num].p_sensor_data,
m_p_instances[inst_num].sensor_addr,
send_msg,
ARRAY_SIZE(send_msg),
true);
}
/**
* ===============================================================================================
* @brief Functions compatible with nrf_gpio
*/
ret_code_t sx1509b_pin_cfg_input(uint32_t pin_number, sx1509b_pin_pull_t pull_config)
{
ret_code_t err_code = sx1509b_pin_cfg_reg_set(SX1509B_REG_DIR_B, pin_number, SX1509B_PIN_DIR_INPUT);
RETURN_IF_ERR(err_code);
err_code = sx1509b_pin_cfg_reg_set(SX1509B_REG_INPUT_DISABLE_B, pin_number, 0);
RETURN_IF_ERR(err_code);
switch (pull_config)
{
case SX1509B_PIN_NOPULL:
err_code = sx1509b_pin_cfg_reg_set(SX1509B_REG_PULL_DOWN_B, pin_number, 0);
RETURN_IF_ERR(err_code);
err_code = sx1509b_pin_cfg_reg_set(SX1509B_REG_PULL_UP_B, pin_number, 0);
break;
case SX1509B_PIN_PULLDOWN:
err_code = sx1509b_pin_cfg_reg_set(SX1509B_REG_PULL_DOWN_B, pin_number, 1);
RETURN_IF_ERR(err_code);
err_code = sx1509b_pin_cfg_reg_set(SX1509B_REG_PULL_UP_B, pin_number, 0);
break;
case SX1509B_PIN_PULLUP:
err_code = sx1509b_pin_cfg_reg_set(SX1509B_REG_PULL_DOWN_B, pin_number, 0);
RETURN_IF_ERR(err_code);
err_code = sx1509b_pin_cfg_reg_set(SX1509B_REG_PULL_UP_B, pin_number, 1);
break;
};
return err_code;
}
ret_code_t sx1509b_pin_cfg_default(uint32_t pin_number)
{
if (pin_number >= SX1509B_INNER_PIN_COUNT * m_inst_count)
{
return NRF_ERROR_INVALID_PARAM;
}
uint8_t inst_num = pin_number / SX1509B_INNER_PIN_COUNT;
pin_number %= SX1509B_INNER_PIN_COUNT;
uint8_t reg = (pin_number >= SX1509B_INNER_NEXT_BANK) ? 0 : 1;
pin_number %= SX1509B_INNER_NEXT_BANK;
ret_code_t err_code = NRF_SUCCESS;
for (uint8_t i = SX1509B_REG_INPUT_DISABLE_B + reg; i < SX1509B_REG_DIR_B; i += 2)
{
if (IS_SET(m_p_instances[inst_num].registers[i], pin_number) == 1)
{
CLR_BIT(m_p_instances[inst_num].registers[i], pin_number);
err_code = nrf_twi_sensor_reg_write(m_p_instances[inst_num].p_sensor_data,
m_p_instances[inst_num].sensor_addr,
i,
&m_p_instances[inst_num].registers[i],
1);
}
}
for (uint8_t i = SX1509B_REG_DIR_B + reg; i < SX1509B_REG_SENSE_H_B; i += 2)
{
if (IS_SET(m_p_instances[inst_num].registers[i], pin_number) == 0)
{
SET_BIT(m_p_instances[inst_num].registers[i], pin_number);
err_code = nrf_twi_sensor_reg_write(m_p_instances[inst_num].p_sensor_data,
m_p_instances[inst_num].sensor_addr,
i,
&m_p_instances[inst_num].registers[i],
1);
}
}
for (uint8_t i = SX1509B_REG_SENSE_H_B + reg; i < SX1509B_REG_KEY_DATA_1; i += 2)
{
if (IS_SET(m_p_instances[inst_num].registers[i], pin_number) == 1)
{
CLR_BIT(m_p_instances[inst_num].registers[i], pin_number);
err_code = nrf_twi_sensor_reg_write(m_p_instances[inst_num].p_sensor_data,
m_p_instances[inst_num].sensor_addr,
i,
&m_p_instances[inst_num].registers[i],
1);
}
}
return err_code;
}
ret_code_t sx1509b_pin_cfg_sense_input(uint32_t pin_number,
sx1509b_pin_pull_t pull_config,
sx1509b_pin_sense_t sense_config)
{
ret_code_t err_code = sx1509b_pin_cfg_input(pin_number, pull_config);
RETURN_IF_ERR(err_code);
return sx1509b_pin_cfg_sense_set(pin_number, sense_config);
}
ret_code_t sx1509b_pin_cfg_sense_set(uint32_t pin_number, sx1509b_pin_sense_t sense_config)
{
ret_code_t err;
if (sense_config == SX1509B_PIN_NOSENSE)
{
err = sx1509b_pin_cfg_reg_set(SX1509B_REG_INT_MASK_B, pin_number, 1);
RETURN_IF_ERR(err);
}
else
{
err = sx1509b_pin_cfg_reg_set(SX1509B_REG_INT_MASK_B, pin_number, 0);
RETURN_IF_ERR(err);
}
return sx1509b_pin_cfg_reg_set(SX1509B_REG_SENSE_H_B, pin_number, sense_config);
}
ret_code_t sx1509b_pin_dir_set(uint32_t pin_number, sx1509b_pin_dir_t direction)
{
if (direction == SX1509B_PIN_DIR_INPUT)
{
return sx1509b_pin_cfg_input(pin_number, SX1509B_PIN_NOPULL);
}
else
{
return sx1509b_pin_cfg_output(pin_number);
}
}
ret_code_t sx1509b_ports_read(uint8_t start_port, uint32_t length, uint8_t * p_masks)
{
if (start_port + length > SX1509B_INNER_PORT_COUNT * m_inst_count)
{
return NRF_ERROR_INVALID_LENGTH;
}
for (uint8_t i = 0; i < length; i++)
{
p_masks[i] = sx1509b_port_in_read(start_port + i);
}
return NRF_SUCCESS;
}
ret_code_t sx1509b_latches_read(uint8_t start_port, uint32_t length, uint8_t * p_masks)
{
if (start_port + length > SX1509B_INNER_PORT_COUNT * m_inst_count)
{
return NRF_ERROR_INVALID_LENGTH;
}
for (uint8_t i = 0; i < length; i++)
{
p_masks[i] = sx1509b_port_cfg_reg_get(SX1509B_REG_INT_SRC_B, start_port + i);
}
return NRF_SUCCESS;
}
ret_code_t sx1509b_pin_latch_clear(uint32_t pin_number)
{
ret_code_t err_code = sx1509b_pin_cfg_reg_set(SX1509B_REG_INT_SRC_B, pin_number, 1);
RETURN_IF_ERR(err_code);
uint8_t inst_num = pin_number / SX1509B_INNER_PIN_COUNT;
pin_number %= SX1509B_INNER_PIN_COUNT;
uint8_t reg = SX1509B_REG_INT_SRC_B;
reg += (pin_number >= SX1509B_INNER_NEXT_BANK) ? 0 : 1;
pin_number %= SX1509B_INNER_NEXT_BANK;
CLR_BIT(m_p_instances[inst_num].registers[reg], pin_number);
return err_code;
}
/**
* ===============================================================================================
* @brief Led driver functions.
*/
ret_code_t sx1509b_led_driver_enable(uint8_t instance_num, bool clock_internal, uint8_t frequency)
{
if (instance_num >= m_inst_count)
{
return NRF_ERROR_INVALID_PARAM;
}
NRF_TWI_SENSOR_REG_SET(m_p_instances[instance_num].registers[SX1509B_REG_CLOCK],
SX1509B_OSC_SRC_MASK,
SX1509B_OSC_SRC_POS,
(clock_internal == 1) ? 2 : 1);
NRF_TWI_SENSOR_REG_SET(m_p_instances[instance_num].registers[SX1509B_REG_MISC],
SX1509B_LED_FREQ_MASK,
SX1509B_LED_FREQ_POS,
frequency);
uint8_t send_msg[] = {
SX1509B_REG_CLOCK,
m_p_instances[instance_num].registers[SX1509B_REG_CLOCK],
m_p_instances[instance_num].registers[SX1509B_REG_MISC]
};
return nrf_twi_sensor_write(m_p_instances[instance_num].p_sensor_data,
m_p_instances[instance_num].sensor_addr,
send_msg,
ARRAY_SIZE(send_msg),
true);
}
ret_code_t sx1509b_led_mode(uint8_t port_num, bool mode)
{
if (port_num >= SX1509B_INNER_PORT_COUNT * m_inst_count)
{
return NRF_ERROR_INVALID_PARAM;
}
uint8_t inst_num = port_num / SX1509B_INNER_PORT_COUNT;
port_num %= SX1509B_INNER_PORT_COUNT;
uint8_t *p_reg_val = &m_p_instances[inst_num].registers[SX1509B_REG_MISC];
if (port_num == 1)
{
NRF_TWI_SENSOR_REG_SET(*p_reg_val, SX1509B_LED_MODE_B_MASK, SX1509B_LED_MODE_B_POS, mode);
}
else
{
NRF_TWI_SENSOR_REG_SET(*p_reg_val, SX1509B_LED_MODE_A_MASK, SX1509B_LED_MODE_A_POS, mode);
}
uint8_t send_msg[] = {
SX1509B_REG_MISC,
*p_reg_val
};
return nrf_twi_sensor_write(m_p_instances[inst_num].p_sensor_data,
m_p_instances[inst_num].sensor_addr,
send_msg,
ARRAY_SIZE(send_msg),
true);
}
uint8_t sx1509b_led_driver_get_reg(uint32_t pin_number)
{
uint8_t reg;
bool fade_reg = false;
if (pin_number >= SX1509B_INNER_NEXT_BANK)
{
pin_number %= SX1509B_INNER_NEXT_BANK;
if (pin_number >= SX1509B_LED_DRIVER_TIME_REG_NUM)
{
reg = SX1509B_REG_LED_FADE_B_START;
fade_reg = true;
}
else
{
reg = SX1509B_REG_LED_BANK_B_START;
}
}
else
{
if (pin_number >= SX1509B_LED_DRIVER_TIME_REG_NUM)
{
reg = SX1509B_REG_LED_FADE_A_START;
fade_reg = true;
}
else
{
reg = SX1509B_REG_LED_BANK_A_START;
}
}
if (fade_reg == true)
{
pin_number %= SX1509B_LED_DRIVER_FADE_REG_NUM;
reg += SX1509B_LED_DRIVER_FADE_REG_LEN * pin_number;
}
else
{
pin_number %= SX1509B_LED_DRIVER_TIME_REG_NUM;
reg += SX1509B_LED_DRIVER_TIME_REG_LEN * pin_number;
}
return reg;
}
ret_code_t sx1509b_led_pin_time(uint32_t pin_number,
uint8_t on_time,
uint8_t on_intensity,
uint8_t off_time,
uint8_t off_intensity)
{
uint8_t inst_num = pin_number / SX1509B_INNER_PIN_COUNT;
if (inst_num >= m_inst_count)
{
return NRF_ERROR_INVALID_PARAM;
}
pin_number %= SX1509B_INNER_PIN_COUNT;
uint8_t reg = sx1509b_led_driver_get_reg(pin_number);
uint8_t send_msg[] = {
reg,
on_time & 0x1F,
on_intensity,
(off_time << SX1509B_OFF_TIME_POS) | (off_intensity & SX1509B_OFF_INTENSITY_MASK)
};
return nrf_twi_sensor_write(m_p_instances[inst_num].p_sensor_data,
m_p_instances[inst_num].sensor_addr,
send_msg,
ARRAY_SIZE(send_msg),
true);
}
ret_code_t sx1509b_led_pin_fade(uint32_t pin_number, uint8_t fade_in, uint8_t fade_out)
{
if ((pin_number % SX1509B_INNER_NEXT_BANK) <= SX1509B_LED_DRIVER_TIME_REG_LEN)
{
return NRF_ERROR_INVALID_PARAM;
}
uint8_t inst_num = pin_number / SX1509B_INNER_PIN_COUNT;
if (inst_num >= m_inst_count)
{
return NRF_ERROR_INVALID_PARAM;
}
pin_number %= SX1509B_INNER_PIN_COUNT;
uint8_t reg = sx1509b_led_driver_get_reg(pin_number) + SX1509B_LED_DRIVER_T_RISE;
uint8_t send_msg[] = {
reg,
fade_in & 0x1F,
fade_out & 0x1F
};
return nrf_twi_sensor_write(m_p_instances[inst_num].p_sensor_data,
m_p_instances[inst_num].sensor_addr,
send_msg,
ARRAY_SIZE(send_msg),
true);
}
ret_code_t sx1509b_led_pin_enable(uint32_t pin_number)
{
uint8_t inst_num = pin_number / SX1509B_INNER_PIN_COUNT;
if (inst_num >= m_inst_count)
{
return NRF_ERROR_INVALID_PARAM;
}
pin_number %= SX1509B_INNER_PIN_COUNT;
uint8_t reg_add = (pin_number > SX1509B_INNER_NEXT_BANK) ? 0 : 1;
pin_number %= SX1509B_INNER_NEXT_BANK;
SET_BIT(m_p_instances[inst_num].registers[SX1509B_REG_INPUT_DISABLE_B + reg_add], pin_number);
CLR_BIT(m_p_instances[inst_num].registers[SX1509B_REG_PULL_UP_B + reg_add], pin_number);
SET_BIT(m_p_instances[inst_num].registers[SX1509B_REG_OPEN_DRAIN_B + reg_add], pin_number);
CLR_BIT(m_p_instances[inst_num].registers[SX1509B_REG_DIR_B + reg_add], pin_number);
CLR_BIT(m_p_instances[inst_num].registers[SX1509B_REG_DATA_B + reg_add], pin_number);
SET_BIT(m_p_instances[inst_num].registers[SX1509B_REG_LED_DRV_ENABLE_B + reg_add], pin_number);
return nrf_twi_sensor_write(m_p_instances[inst_num].p_sensor_data,
m_p_instances[inst_num].sensor_addr,
&m_p_instances[inst_num].start_addr,
SX1509B_REG_DEBOUNCE_CONFIG + 1, // + 1 byte for address
false);
}
ret_code_t sx1509b_led_pin_disable(uint32_t pin_number)
{
uint8_t inst_num = pin_number / SX1509B_INNER_PIN_COUNT;
if (inst_num >= m_inst_count)
{
return NRF_ERROR_INVALID_PARAM;
}
pin_number %= SX1509B_INNER_PIN_COUNT;
uint8_t reg_add = (pin_number > SX1509B_INNER_NEXT_BANK) ? 0 : 1;
pin_number %= SX1509B_INNER_NEXT_BANK;
CLR_BIT(m_p_instances[inst_num].registers[SX1509B_REG_INPUT_DISABLE_B + reg_add], pin_number);
CLR_BIT(m_p_instances[inst_num].registers[SX1509B_REG_OPEN_DRAIN_B + reg_add], pin_number);
SET_BIT(m_p_instances[inst_num].registers[SX1509B_REG_DIR_B + reg_add], pin_number);
SET_BIT(m_p_instances[inst_num].registers[SX1509B_REG_DATA_B + reg_add], pin_number);
CLR_BIT(m_p_instances[inst_num].registers[SX1509B_REG_LED_DRV_ENABLE_B + reg_add], pin_number);
return nrf_twi_sensor_write(m_p_instances[inst_num].p_sensor_data,
m_p_instances[inst_num].sensor_addr,
&m_p_instances[inst_num].start_addr,
SX1509B_REG_DEBOUNCE_CONFIG + 1, // + 1 byte for address
false);
}
/**
* ===============================================================================================
* @brief Key Engine functions.
*/
ret_code_t sx1509b_key_engine_enable(uint8_t instance_num,
uint8_t rows,
uint8_t columns,
sx1509b_key_sleep_t sleep_time,
sx1509b_key_scan_t scan_time,
sx1509b_debounce_t debounce_time)
{
if (instance_num >= m_inst_count)
{
return NRF_ERROR_INVALID_PARAM;
}
if (rows < 2)
{
NRF_TWI_SENSOR_REG_SET(m_p_instances[instance_num].registers[SX1509B_REG_KEY_CONFIG_2],
SX1509B_ROW_NUM_MASK,
SX1509B_ROW_NUM_POS,
0);
uint8_t send_msg[] = {
SX1509B_REG_KEY_CONFIG_2,
m_p_instances[instance_num].registers[SX1509B_REG_KEY_CONFIG_2]
};
return nrf_twi_sensor_write(m_p_instances[instance_num].p_sensor_data,
m_p_instances[instance_num].sensor_addr,
send_msg,
ARRAY_SIZE(send_msg),
true);
}
uint8_t in_mask = 0, out_mask = 0;
uint8_t in_port = 0 + instance_num * SX1509B_INNER_PORT_COUNT;
uint8_t out_port = 1 + instance_num * SX1509B_INNER_PORT_COUNT;
for (uint8_t i = 0; i < rows; i++)
{
in_mask <<= 1;
in_mask |= 1;
}
for (uint8_t i = 0; i < columns; i++)
{
out_mask <<= 1;
out_mask |= 1;
}
ret_code_t err = sx1509b_port_dir_output_set(in_port, in_mask);
RETURN_IF_ERR(err);
err = sx1509b_port_dir_input_set(out_port, out_mask);
RETURN_IF_ERR(err);
err = sx1509b_port_open_drain(out_port, out_mask, SX1509B_PORT_SET);
RETURN_IF_ERR(err);
err = sx1509b_port_pull_up(in_port, in_mask, SX1509B_PORT_SET);
RETURN_IF_ERR(err);
m_p_instances[instance_num].registers[SX1509B_REG_DEBOUNCE_CONFIG] = debounce_time;
m_p_instances[instance_num].registers[SX1509B_REG_DEBOUNCE_EN_B] |= in_mask;
NRF_TWI_SENSOR_REG_SET(m_p_instances[instance_num].registers[SX1509B_REG_KEY_CONFIG_1],
SX1509B_SLEEP_TIME_MASK,
SX1509B_SLEEP_TIME_POS,
sleep_time);
NRF_TWI_SENSOR_REG_SET(m_p_instances[instance_num].registers[SX1509B_REG_KEY_CONFIG_1],
SX1509B_SCAN_TIME_MASK,
SX1509B_SCAN_TIME_POS,
scan_time);
NRF_TWI_SENSOR_REG_SET(m_p_instances[instance_num].registers[SX1509B_REG_KEY_CONFIG_2],
SX1509B_ROW_NUM_MASK,
SX1509B_ROW_NUM_POS,
rows - 1);
NRF_TWI_SENSOR_REG_SET(m_p_instances[instance_num].registers[SX1509B_REG_KEY_CONFIG_2],
SX1509B_COL_NUM_MASK,
SX1509B_COL_NUM_POS,
columns - 1);
uint8_t send_msg[] = {
SX1509B_REG_DEBOUNCE_CONFIG,
m_p_instances[instance_num].registers[SX1509B_REG_DEBOUNCE_CONFIG],
m_p_instances[instance_num].registers[SX1509B_REG_DEBOUNCE_EN_B],
m_p_instances[instance_num].registers[SX1509B_REG_DEBOUNCE_EN_A],
m_p_instances[instance_num].registers[SX1509B_REG_KEY_CONFIG_1],
m_p_instances[instance_num].registers[SX1509B_REG_KEY_CONFIG_2]
};
return nrf_twi_sensor_write(m_p_instances[instance_num].p_sensor_data,
m_p_instances[instance_num].sensor_addr,
send_msg,
ARRAY_SIZE(send_msg),
true);
}
ret_code_t sx1509b_key_data_update(uint8_t instance_num, nrf_twi_sensor_reg_cb_t user_cb)
{
if (instance_num >= m_inst_count)
{
return NRF_ERROR_INVALID_PARAM;
}
return nrf_twi_sensor_reg_read(m_p_instances[instance_num].p_sensor_data,
m_p_instances[instance_num].sensor_addr,
SX1509B_REG_KEY_DATA_1,
user_cb,
&m_p_instances[instance_num].registers[SX1509B_REG_KEY_DATA_1],
2);
}
static uint8_t sx1509b_key_get_bit_pos(uint8_t reg)
{
uint8_t ret_val = 0xFF;
for(uint8_t i = 0; i < 8; i++)
{
if (IS_SET(reg, 0) == 1)
{
ret_val = i;
break;
}
reg >>= 1;
}
return ret_val;
}
uint8_t sx1509b_key_column_get(uint8_t instance_num)
{
if (instance_num >= m_inst_count)
{
return NRF_ERROR_INVALID_PARAM;
}
uint8_t reg_val = ~m_p_instances[instance_num].registers[SX1509B_REG_KEY_DATA_1];
return sx1509b_key_get_bit_pos(reg_val);
}
uint8_t sx1509b_key_row_get(uint8_t instance_num)
{
if (instance_num >= m_inst_count)
{
return NRF_ERROR_INVALID_PARAM;
}
uint8_t reg_val = ~m_p_instances[instance_num].registers[SX1509B_REG_KEY_DATA_2];
return sx1509b_key_get_bit_pos(reg_val);
}