spider-bot/fw/nrf52/nrf5_sdk/components/serialization/common/ble_serialization.c

550 lines
17 KiB
C

/**
* Copyright (c) 2013 - 2019, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "ble_serialization.h"
#include "nrf_error.h"
#include "app_util.h"
#include <stddef.h>
#include <string.h>
uint32_t ser_ble_cmd_rsp_status_code_enc(uint8_t op_code,
uint32_t command_status,
uint8_t * const p_buf,
uint32_t * const p_buf_len)
{
SER_ASSERT_NOT_NULL(p_buf);
SER_ASSERT_NOT_NULL(p_buf_len);
uint32_t index = 0;
SER_ASSERT_LENGTH_LEQ(SER_CMD_RSP_HEADER_SIZE, *p_buf_len);
//Encode Op Code.
p_buf[index++] = op_code;
//Encode Status.
index += uint32_encode(command_status, &(p_buf[index]));
*p_buf_len = index;
return NRF_SUCCESS;
}
uint32_t ser_ble_cmd_rsp_result_code_dec(uint8_t const * const p_buf,
uint32_t * const p_pos,
uint32_t packet_len,
uint8_t op_code,
uint32_t * const p_result_code)
{
SER_ASSERT_NOT_NULL(p_buf);
SER_ASSERT_NOT_NULL(p_pos);
SER_ASSERT_NOT_NULL(p_result_code);
if (packet_len < SER_CMD_RSP_HEADER_SIZE)
{
return NRF_ERROR_DATA_SIZE;
}
if (p_buf[(*p_pos)] != op_code)
{
return NRF_ERROR_INVALID_DATA;
}
*p_result_code = uint32_decode(&(p_buf[(*p_pos) + SER_CMD_RSP_STATUS_CODE_POS]));
*p_pos += SER_CMD_RSP_HEADER_SIZE;
return NRF_SUCCESS;
}
uint32_t ser_ble_cmd_rsp_dec(uint8_t const * const p_buf,
uint32_t packet_len,
uint8_t op_code,
uint32_t * const p_result_code)
{
uint32_t index = 0;
uint32_t result_code = ser_ble_cmd_rsp_result_code_dec(p_buf, &index, packet_len, op_code,
p_result_code);
if (result_code != NRF_SUCCESS)
{
return result_code;
}
if (index != packet_len)
{
return NRF_ERROR_DATA_SIZE;
}
return NRF_SUCCESS;
}
uint32_t uint32_t_enc(void const * const p_field,
uint8_t * const p_buf,
uint32_t buf_len,
uint32_t * const p_index)
{
SER_ASSERT_NOT_NULL(p_buf);
SER_ASSERT_NOT_NULL(p_field);
SER_ASSERT_NOT_NULL(p_index);
uint32_t * p_uint32 = (uint32_t *)p_field;
SER_ASSERT_LENGTH_LEQ(4, buf_len - *p_index);
*p_index += uint32_encode(*p_uint32, &p_buf[*p_index]);
return NRF_SUCCESS;
}
uint32_t uint32_t_dec(uint8_t const * const p_buf,
uint32_t buf_len,
uint32_t * const p_index,
void * p_field)
{
SER_ASSERT_NOT_NULL(p_buf);
SER_ASSERT_NOT_NULL(p_index);
SER_ASSERT_NOT_NULL(p_field);
uint32_t * p_uint32 = (uint32_t *)p_field;
SER_ASSERT_LENGTH_LEQ(4, ((int32_t)buf_len - *p_index));
*p_uint32 = uint32_decode(&p_buf[*p_index]);
*p_index += 4;
return NRF_SUCCESS;
}
uint32_t uint16_t_enc(const void * const p_field,
uint8_t * const p_buf,
uint32_t buf_len,
uint32_t * const p_index)
{
uint16_t * p_u16 = (uint16_t *)p_field;
SER_ASSERT_LENGTH_LEQ(2, buf_len - *p_index);
*p_index += uint16_encode(*p_u16, &p_buf[*p_index]);
return NRF_SUCCESS;
}
uint32_t uint16_t_dec(uint8_t const * const p_buf,
uint32_t buf_len,
uint32_t * const p_index,
void * p_field)
{
uint16_t * p_u16 = (uint16_t *)p_field;
SER_ASSERT_LENGTH_LEQ(2, ((int32_t)buf_len - *p_index));
*p_u16 = uint16_decode(&p_buf[*p_index]);
*p_index += 2;
return NRF_SUCCESS;
}
void uint16_dec(uint8_t const * const p_buf,
uint32_t buf_len,
uint32_t * const index,
uint16_t * const value)
{
SER_ASSERT_VOID_RETURN(*index + 2 <= buf_len);
*value = uint16_decode(&p_buf[*index]);
*index += 2;
}
uint32_t uint8_t_enc(const void * const p_field,
uint8_t * const p_buf,
uint32_t buf_len,
uint32_t * const p_index)
{
SER_ASSERT_LENGTH_LEQ(1, buf_len - *p_index);
uint8_t * p_u8 = (uint8_t *)p_field;
p_buf[*p_index] = *p_u8;
*p_index += 1;
return NRF_SUCCESS;
}
uint32_t uint8_t_dec(uint8_t const * const p_buf,
uint32_t buf_len,
uint32_t * const p_index,
void * p_field)
{
uint8_t * p_u8 = (uint8_t *)p_field;
SER_ASSERT_LENGTH_LEQ(1, ((int32_t)buf_len - *p_index));
*p_u8 = p_buf[*p_index];
*p_index += 1;
return NRF_SUCCESS;
}
void uint8_dec(uint8_t const * const p_buf,
uint32_t buf_len,
uint32_t * const index,
uint8_t * const value)
{
SER_ASSERT_VOID_RETURN(*index + 1 <= buf_len);
*value = p_buf[*index];
*index += 1;
}
void int8_dec(uint8_t const * const p_buf,
uint32_t buf_len,
uint32_t * const index,
int8_t * const value)
{
SER_ASSERT_VOID_RETURN(*index + 1 <= buf_len);
*value = p_buf[*index];
*index += 1;
}
uint32_t len8data_enc(uint8_t const * const p_data,
uint8_t const dlen,
uint8_t * const p_buf,
uint32_t buf_len,
uint32_t * const p_index)
{
uint32_t err_code = NRF_SUCCESS;
err_code = uint8_t_enc(&dlen, p_buf, buf_len, p_index);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
err_code = buf_enc(p_data, dlen, p_buf, buf_len, p_index);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
return err_code;
}
uint32_t len8data_dec(uint8_t const * const p_buf,
uint32_t buf_len,
uint32_t * const p_index,
uint8_t * * const pp_data,
uint8_t * const p_len)
{
uint32_t err_code = NRF_SUCCESS;
uint16_t out_buf_len = *p_len;
err_code = uint8_t_dec(p_buf, buf_len, p_index, p_len);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
err_code = buf_dec(p_buf, buf_len, p_index, pp_data, out_buf_len, *p_len);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
return err_code;
}
uint32_t len16data_enc(uint8_t const * const p_data,
uint16_t const dlen,
uint8_t * const p_buf,
uint32_t buf_len,
uint32_t * const p_index)
{
uint32_t err_code = NRF_SUCCESS;
err_code = uint16_t_enc(&dlen, p_buf, buf_len, p_index);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
err_code = buf_enc(p_data, dlen, p_buf, buf_len, p_index);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
return err_code;
}
uint32_t len16data_dec(uint8_t const * const p_buf,
uint32_t buf_len,
uint32_t * const p_index,
uint8_t * * const pp_data,
uint16_t * const p_dlen)
{
uint32_t err_code = NRF_SUCCESS;
uint16_t out_buf_len = *p_dlen;
err_code = uint16_t_dec(p_buf, buf_len, p_index, p_dlen);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
err_code = buf_dec(p_buf, buf_len, p_index, pp_data, out_buf_len, *p_dlen);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
return err_code;
}
uint32_t count16_cond_data16_enc(uint16_t const * const p_data,
uint16_t const count,
uint8_t * const p_buf,
uint32_t buf_len,
uint32_t * const p_index)
{
uint32_t i = 0;
SER_ASSERT_LENGTH_LEQ(3, ((int32_t)buf_len - *p_index));
*p_index += uint16_encode(count, &p_buf[*p_index]);
if (p_data)
{
SER_ASSERT_LENGTH_LEQ((int32_t)(2 * count + 1), ((int32_t)buf_len - (int32_t) * p_index));
p_buf[*p_index] = SER_FIELD_PRESENT;
*p_index += 1;
//memcpy may fail in case of Endianness difference between application and connectivity processor
for (i = 0; i < count; i++)
{
*p_index += uint16_encode(p_data[i], &p_buf[*p_index]);
}
}
else
{
SER_ASSERT_LENGTH_LEQ((1), ((int32_t)buf_len - *p_index));
p_buf[*p_index] = SER_FIELD_NOT_PRESENT;
*p_index += 1;
}
return NRF_SUCCESS;
}
uint32_t count16_cond_data16_dec(uint8_t const * const p_buf,
uint32_t buf_len,
uint32_t * const p_index,
uint16_t * * const pp_data,
uint16_t * const p_count)
{
uint16_t count = 0;
uint8_t is_present = 0;
uint16_t i;
SER_ASSERT_NOT_NULL(p_count);
SER_ASSERT_NOT_NULL(pp_data);
SER_ASSERT_NOT_NULL(*pp_data);
SER_ASSERT_LENGTH_LEQ(3, ((int32_t)buf_len - (*p_index)));
uint16_dec(p_buf, buf_len, p_index, &count);
if (count > *p_count)
{
return NRF_ERROR_DATA_SIZE;
}
SER_ASSERT_LENGTH_LEQ(count, *p_count);
uint8_dec(p_buf, buf_len, p_index, &is_present);
if (!is_present)
{
*p_count = count;
*pp_data = NULL;
return NRF_SUCCESS;
}
else
{
for (i = 0; i < count; i++ )
{
uint16_dec(p_buf, buf_len, p_index, &((&(**pp_data))[i]) );
}
*p_count = i;
}
return NRF_SUCCESS;
}
uint32_t cond_len16_cond_data_dec(uint8_t const * const p_buf,
uint32_t buf_len,
uint32_t * const p_index,
uint8_t * * const pp_data,
uint16_t * * const pp_len)
{
SER_ASSERT_NOT_NULL(pp_len);
SER_ASSERT_NOT_NULL(*pp_len);
SER_ASSERT_NOT_NULL(pp_data);
SER_ASSERT_NOT_NULL(*pp_data);
SER_ASSERT_LENGTH_LEQ(2, ((int32_t)buf_len - (*p_index)));
uint8_t is_present = 0;
uint8_dec(p_buf, buf_len, p_index, &is_present);
if (!is_present)
{
*pp_len = NULL; //if length field is not present
(*p_index)++; //then data can not be present
*pp_data = NULL;
return NRF_SUCCESS;
}
else
{
return len16data_dec(p_buf, buf_len, p_index, pp_data, *pp_len);
}
}
uint32_t op_status_enc(uint8_t op_code,
uint32_t return_code,
uint8_t * const p_buff,
uint32_t * const p_buff_len,
uint32_t * const p_index)
{
SER_ASSERT_NOT_NULL(p_buff);
SER_ASSERT_NOT_NULL(p_buff_len);
SER_ASSERT_NOT_NULL(p_index);
SER_ASSERT_LENGTH_LEQ(SER_CMD_RSP_HEADER_SIZE, *p_buff_len - *p_index);
//Encode Op Code.
p_buff[(*p_index)++] = op_code;
//Encode Status.
*p_index += uint32_encode(return_code, &(p_buff[*p_index]));
//update size of used buffer
*p_buff_len = *p_index;
return NRF_SUCCESS;
}
uint32_t op_status_cond_uint16_enc(uint8_t op_code,
uint32_t return_code,
uint16_t value,
uint8_t * const p_buff,
uint32_t * const p_buff_len,
uint32_t * const p_index)
{
uint32_t status_code;
uint32_t init_buff_len = *p_buff_len;
status_code = op_status_enc(op_code, return_code, p_buff, p_buff_len, p_index);
SER_ASSERT(status_code == NRF_SUCCESS, status_code);
if (return_code == NRF_SUCCESS) //Add 16bit value when return_code is a success
{
*p_buff_len = init_buff_len; //restore original value - it has been modified by op_status_enc
status_code = uint16_t_enc(&value, p_buff, *p_buff_len, p_index);
*p_buff_len = *p_index;
SER_ASSERT(status_code == NRF_SUCCESS, status_code);
}
return status_code;
}
uint32_t buf_enc(uint8_t const * const p_data,
uint16_t const dlen,
uint8_t * const p_buf,
uint32_t buf_len,
uint32_t * const p_index)
{
uint32_t err_code = NRF_SUCCESS;
uint8_t is_present = (p_data == NULL) ? SER_FIELD_NOT_PRESENT : SER_FIELD_PRESENT;
err_code = uint8_t_enc(&is_present, p_buf, buf_len, p_index);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
if (p_data)
{
SER_ASSERT_LENGTH_LEQ(dlen, ((int32_t)buf_len - *p_index));
memcpy(&p_buf[*p_index], p_data, dlen);
*p_index += dlen;
}
return err_code;
}
uint32_t buf_dec(uint8_t const * const p_buf,
uint32_t buf_len,
uint32_t * const p_index,
uint8_t * * const pp_data,
uint16_t data_len,
uint16_t dlen)
{
uint8_t is_present = 0;
SER_ASSERT_LENGTH_LEQ(1, ((int32_t)buf_len - *p_index));
uint8_dec(p_buf, buf_len, p_index, &is_present);
if (is_present == SER_FIELD_PRESENT)
{
SER_ASSERT_NOT_NULL(pp_data);
SER_ASSERT_NOT_NULL(*pp_data);
SER_ASSERT_LENGTH_LEQ(dlen, data_len);
SER_ASSERT_LENGTH_LEQ(dlen, ((int32_t)buf_len - *p_index));
memcpy(*pp_data, &p_buf[*p_index], dlen);
*p_index += dlen;
}
else
{
if (pp_data)
{
*pp_data = NULL;
}
}
return NRF_SUCCESS;
}
uint32_t uint8_vector_enc(uint8_t const * const p_data,
uint16_t const dlen,
uint8_t * const p_buf,
uint32_t buf_len,
uint32_t * const p_index)
{
SER_ASSERT_NOT_NULL(p_data);
SER_ASSERT_NOT_NULL(p_buf);
SER_ASSERT_NOT_NULL(p_index);
SER_ASSERT_LENGTH_LEQ(dlen, ((int32_t)buf_len - *p_index));
memcpy(&p_buf[*p_index], p_data, dlen);
*p_index += dlen;
return NRF_SUCCESS;
}
uint32_t uint8_vector_dec(uint8_t const * const p_buf,
uint32_t buf_len,
uint32_t * const p_index,
uint8_t * const p_data,
uint16_t dlen)
{
SER_ASSERT_NOT_NULL(p_data);
SER_ASSERT_LENGTH_LEQ(dlen, ((int32_t)buf_len - *p_index));
memcpy(p_data, &p_buf[*p_index], dlen);
*p_index += dlen;
return NRF_SUCCESS;
}