581 lines
18 KiB
C
581 lines
18 KiB
C
/**
|
|
* Copyright (c) 2016 - 2019, Nordic Semiconductor ASA
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form, except as embedded into a Nordic
|
|
* Semiconductor ASA integrated circuit in a product or a software update for
|
|
* such product, must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other
|
|
* materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
|
|
* contributors may be used to endorse or promote products derived from this
|
|
* software without specific prior written permission.
|
|
*
|
|
* 4. This software, with or without modification, must only be used with a
|
|
* Nordic Semiconductor ASA integrated circuit.
|
|
*
|
|
* 5. Any software provided in binary form under this license must not be reverse
|
|
* engineered, decompiled, modified and/or disassembled.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
|
|
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
|
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
#include "sdk_common.h"
|
|
#if NRF_MODULE_ENABLED(NRF_QUEUE)
|
|
#include "nrf_queue.h"
|
|
#include "app_util_platform.h"
|
|
|
|
#if NRF_QUEUE_CONFIG_LOG_ENABLED
|
|
#define NRF_LOG_LEVEL NRF_QUEUE_CONFIG_LOG_LEVEL
|
|
#define NRF_LOG_INIT_FILTER_LEVEL NRF_QUEUE_CONFIG_LOG_INIT_FILTER_LEVEL
|
|
#define NRF_LOG_INFO_COLOR NRF_QUEUE_CONFIG_INFO_COLOR
|
|
#define NRF_LOG_DEBUG_COLOR NRF_QUEUE_CONFIG_DEBUG_COLOR
|
|
#else
|
|
#define NRF_LOG_LEVEL 0
|
|
#endif // NRF_QUEUE_CONFIG_LOG_ENABLED
|
|
#include "nrf_log.h"
|
|
|
|
NRF_SECTION_DEF(nrf_queue, nrf_queue_t);
|
|
|
|
#if NRF_QUEUE_CLI_CMDS && NRF_CLI_ENABLED
|
|
#include "nrf_cli.h"
|
|
|
|
static void nrf_queue_status(nrf_cli_t const * p_cli, size_t argc, char **argv)
|
|
{
|
|
UNUSED_PARAMETER(argv);
|
|
|
|
if (nrf_cli_help_requested(p_cli))
|
|
{
|
|
nrf_cli_help_print(p_cli, NULL, 0);
|
|
return;
|
|
}
|
|
|
|
if (argc > 1)
|
|
{
|
|
nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Bad argument count");
|
|
return;
|
|
}
|
|
|
|
uint32_t num_of_instances = NRF_SECTION_ITEM_COUNT(nrf_queue, nrf_queue_t);
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < num_of_instances; i++)
|
|
{
|
|
const nrf_queue_t * p_instance = NRF_SECTION_ITEM_GET(nrf_queue, nrf_queue_t, i);
|
|
|
|
uint32_t element_size = p_instance->element_size;
|
|
uint32_t size = p_instance->size;
|
|
uint32_t max_util = nrf_queue_max_utilization_get(p_instance);
|
|
uint32_t util = nrf_queue_utilization_get(p_instance);
|
|
const char * p_name = p_instance->p_name;
|
|
nrf_cli_fprintf(p_cli, NRF_CLI_NORMAL,
|
|
"%s\r\n\t- Element size:\t%d\r\n"
|
|
"\t- Usage:\t%u%% (%u out of %u elements)\r\n"
|
|
"\t- Maximum:\t%u%% (%u out of %u elements)\r\n"
|
|
"\t- Mode:\t\t%s\r\n\r\n",
|
|
p_name, element_size,
|
|
100ul * util/size, util,size,
|
|
100ul * max_util/size, max_util,size,
|
|
(p_instance->mode == NRF_QUEUE_MODE_OVERFLOW) ? "Overflow" : "No overflow");
|
|
|
|
}
|
|
}
|
|
// Register "queue" command and its subcommands in CLI.
|
|
NRF_CLI_CREATE_STATIC_SUBCMD_SET(nrf_queue_commands)
|
|
{
|
|
NRF_CLI_CMD(status, NULL, "Print status of queue instances.", nrf_queue_status),
|
|
NRF_CLI_SUBCMD_SET_END
|
|
};
|
|
|
|
NRF_CLI_CMD_REGISTER(queue, &nrf_queue_commands, "Commands for BALLOC management", nrf_queue_status);
|
|
#endif //NRF_QUEUE_CLI_CMDS
|
|
|
|
__STATIC_INLINE size_t circullar_buffer_size_get(nrf_queue_t const * p_queue)
|
|
{
|
|
static const uint8_t full_queue_indicator = 1;
|
|
|
|
/* When a queue is implemented as a cyclic buffer, it is not possible to
|
|
* distinguish a full queue from an empty queue. In order to solve this
|
|
* problem, the cyclic buffer has been implemented one element larger than
|
|
* the queue size.
|
|
*/
|
|
return p_queue->size + full_queue_indicator;
|
|
}
|
|
|
|
/**@brief Get next element index.
|
|
*
|
|
* @param[in] p_queue Pointer to the queue instance.
|
|
* @param[in] idx Current index.
|
|
*
|
|
* @return Next element index.
|
|
*/
|
|
__STATIC_INLINE size_t nrf_queue_next_idx(nrf_queue_t const * p_queue, size_t idx)
|
|
{
|
|
ASSERT(p_queue != NULL);
|
|
return (idx < p_queue->size) ? (idx + 1) : 0;
|
|
}
|
|
|
|
/**@brief Get current queue utilization. This function assumes that this process will not be interrupted.
|
|
*
|
|
* @param[in] p_queue Pointer to the queue instance.
|
|
*
|
|
* @return Current queue utilization.
|
|
*/
|
|
__STATIC_INLINE size_t queue_utilization_get(nrf_queue_t const * p_queue)
|
|
{
|
|
size_t front = p_queue->p_cb->front;
|
|
size_t back = p_queue->p_cb->back;
|
|
|
|
return (back >= front) ? (back - front) :
|
|
(circullar_buffer_size_get(p_queue) - front + back);
|
|
}
|
|
|
|
bool nrf_queue_is_full(nrf_queue_t const * p_queue)
|
|
{
|
|
ASSERT(p_queue != NULL);
|
|
size_t front = p_queue->p_cb->front;
|
|
size_t back = p_queue->p_cb->back;
|
|
|
|
return (nrf_queue_next_idx(p_queue, back) == front);
|
|
}
|
|
|
|
ret_code_t nrf_queue_push(nrf_queue_t const * p_queue, void const * p_element)
|
|
{
|
|
ret_code_t status = NRF_SUCCESS;
|
|
|
|
ASSERT(p_queue != NULL);
|
|
ASSERT(p_element != NULL);
|
|
|
|
CRITICAL_REGION_ENTER();
|
|
bool is_full = nrf_queue_is_full(p_queue);
|
|
|
|
if (!is_full || (p_queue->mode == NRF_QUEUE_MODE_OVERFLOW))
|
|
{
|
|
// Get write position.
|
|
size_t write_pos = p_queue->p_cb->back;
|
|
p_queue->p_cb->back = nrf_queue_next_idx(p_queue, p_queue->p_cb->back);
|
|
if (is_full)
|
|
{
|
|
// Overwrite the oldest element.
|
|
NRF_LOG_INST_WARNING(p_queue->p_log, "Queue full. Overwriting oldest element.");
|
|
p_queue->p_cb->front = nrf_queue_next_idx(p_queue, p_queue->p_cb->front);
|
|
}
|
|
|
|
// Write a new element.
|
|
switch (p_queue->element_size)
|
|
{
|
|
case sizeof(uint8_t):
|
|
((uint8_t *)p_queue->p_buffer)[write_pos] = *((uint8_t *)p_element);
|
|
break;
|
|
|
|
case sizeof(uint16_t):
|
|
((uint16_t *)p_queue->p_buffer)[write_pos] = *((uint16_t *)p_element);
|
|
break;
|
|
|
|
case sizeof(uint32_t):
|
|
((uint32_t *)p_queue->p_buffer)[write_pos] = *((uint32_t *)p_element);
|
|
break;
|
|
|
|
case sizeof(uint64_t):
|
|
((uint64_t *)p_queue->p_buffer)[write_pos] = *((uint64_t *)p_element);
|
|
break;
|
|
|
|
default:
|
|
memcpy((void *)((size_t)p_queue->p_buffer + write_pos * p_queue->element_size),
|
|
p_element,
|
|
p_queue->element_size);
|
|
break;
|
|
}
|
|
|
|
// Update utilization.
|
|
size_t utilization = queue_utilization_get(p_queue);
|
|
if (p_queue->p_cb->max_utilization < utilization)
|
|
{
|
|
p_queue->p_cb->max_utilization = utilization;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
status = NRF_ERROR_NO_MEM;
|
|
}
|
|
|
|
CRITICAL_REGION_EXIT();
|
|
|
|
NRF_LOG_INST_DEBUG(p_queue->p_log, "pushed element 0x%08X, status:%d", p_element, status);
|
|
return status;
|
|
}
|
|
|
|
ret_code_t nrf_queue_generic_pop(nrf_queue_t const * p_queue,
|
|
void * p_element,
|
|
bool just_peek)
|
|
{
|
|
ret_code_t status = NRF_SUCCESS;
|
|
|
|
ASSERT(p_queue != NULL);
|
|
ASSERT(p_element != NULL);
|
|
|
|
CRITICAL_REGION_ENTER();
|
|
|
|
if (!nrf_queue_is_empty(p_queue))
|
|
{
|
|
// Get read position.
|
|
size_t read_pos = p_queue->p_cb->front;
|
|
|
|
// Update next read position.
|
|
if (!just_peek)
|
|
{
|
|
p_queue->p_cb->front = nrf_queue_next_idx(p_queue, p_queue->p_cb->front);
|
|
}
|
|
|
|
// Read element.
|
|
switch (p_queue->element_size)
|
|
{
|
|
case sizeof(uint8_t):
|
|
*((uint8_t *)p_element) = ((uint8_t *)p_queue->p_buffer)[read_pos];
|
|
break;
|
|
|
|
case sizeof(uint16_t):
|
|
*((uint16_t *)p_element) = ((uint16_t *)p_queue->p_buffer)[read_pos];
|
|
break;
|
|
|
|
case sizeof(uint32_t):
|
|
*((uint32_t *)p_element) = ((uint32_t *)p_queue->p_buffer)[read_pos];
|
|
break;
|
|
|
|
case sizeof(uint64_t):
|
|
*((uint64_t *)p_element) = ((uint64_t *)p_queue->p_buffer)[read_pos];
|
|
break;
|
|
|
|
default:
|
|
memcpy(p_element,
|
|
(void const *)((size_t)p_queue->p_buffer + read_pos * p_queue->element_size),
|
|
p_queue->element_size);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
status = NRF_ERROR_NOT_FOUND;
|
|
}
|
|
|
|
CRITICAL_REGION_EXIT();
|
|
NRF_LOG_INST_DEBUG(p_queue->p_log, "%s element 0x%08X, status:%d",
|
|
just_peek ? "peeked" : "popped", p_element, status);
|
|
return status;
|
|
}
|
|
|
|
/* Purpose of this function is to provide number of continous bytes in the queue's
|
|
* array before circullar buffer needs to wrapp.
|
|
*/
|
|
static size_t continous_items_get(nrf_queue_t const * p_queue, bool write)
|
|
{
|
|
size_t front = p_queue->p_cb->front;
|
|
size_t back = p_queue->p_cb->back;
|
|
|
|
/* Number of continous items for queue write operation */
|
|
if (write)
|
|
{
|
|
return (back >= front) ? circullar_buffer_size_get(p_queue) - back : front - back;
|
|
}
|
|
else
|
|
{
|
|
return (back >= front) ? back - front : circullar_buffer_size_get(p_queue) - front;
|
|
}
|
|
}
|
|
|
|
/**@brief Write elements to the queue. This function assumes that there is enough room in the queue
|
|
* to write the requested number of elements and that this process will not be interrupted.
|
|
*
|
|
* @param[in] p_queue Pointer to the nrf_queue_t instance.
|
|
* @param[in] p_data Pointer to the buffer with elements to write.
|
|
* @param[in] element_count Number of elements to write.
|
|
*/
|
|
static void queue_write(nrf_queue_t const * p_queue, void const * p_data, uint32_t element_count)
|
|
{
|
|
size_t prev_available = nrf_queue_available_get(p_queue);
|
|
size_t continuous = continous_items_get(p_queue, true);
|
|
void * p_write_ptr = (void *)((size_t)p_queue->p_buffer
|
|
+ p_queue->p_cb->back * p_queue->element_size);
|
|
|
|
if (element_count <= continuous)
|
|
{
|
|
memcpy(p_write_ptr,
|
|
p_data,
|
|
element_count * p_queue->element_size);
|
|
|
|
p_queue->p_cb->back = ((p_queue->p_cb->back + element_count) <= p_queue->size)
|
|
? (p_queue->p_cb->back + element_count)
|
|
: 0;
|
|
}
|
|
else
|
|
{
|
|
size_t first_write_length = continuous * p_queue->element_size;
|
|
memcpy(p_write_ptr,
|
|
p_data,
|
|
first_write_length);
|
|
|
|
size_t elements_left = element_count - continuous;
|
|
memcpy(p_queue->p_buffer,
|
|
(void const *)((size_t)p_data + first_write_length),
|
|
elements_left * p_queue->element_size);
|
|
|
|
p_queue->p_cb->back = elements_left;
|
|
if (prev_available < element_count)
|
|
{
|
|
// Overwrite the oldest elements.
|
|
p_queue->p_cb->front = nrf_queue_next_idx(p_queue, p_queue->p_cb->back);
|
|
}
|
|
}
|
|
|
|
// Update utilization.
|
|
size_t utilization = queue_utilization_get(p_queue);
|
|
if (p_queue->p_cb->max_utilization < utilization)
|
|
{
|
|
p_queue->p_cb->max_utilization = utilization;
|
|
}
|
|
}
|
|
|
|
ret_code_t nrf_queue_write(nrf_queue_t const * p_queue,
|
|
void const * p_data,
|
|
size_t element_count)
|
|
{
|
|
ret_code_t status = NRF_SUCCESS;
|
|
|
|
ASSERT(p_queue != NULL);
|
|
ASSERT(p_data != NULL);
|
|
ASSERT(element_count <= p_queue->size);
|
|
|
|
if (element_count == 0)
|
|
{
|
|
return NRF_SUCCESS;
|
|
}
|
|
|
|
CRITICAL_REGION_ENTER();
|
|
|
|
if ((nrf_queue_available_get(p_queue) >= element_count)
|
|
|| (p_queue->mode == NRF_QUEUE_MODE_OVERFLOW))
|
|
{
|
|
queue_write(p_queue, p_data, element_count);
|
|
}
|
|
else
|
|
{
|
|
status = NRF_ERROR_NO_MEM;
|
|
}
|
|
|
|
CRITICAL_REGION_EXIT();
|
|
|
|
NRF_LOG_INST_DEBUG(p_queue->p_log, "Write %d elements (start address: 0x%08X), status:%d",
|
|
element_count, p_data, status);
|
|
return status;
|
|
}
|
|
|
|
|
|
size_t nrf_queue_in(nrf_queue_t const * p_queue,
|
|
void const * p_data,
|
|
size_t element_count)
|
|
{
|
|
ASSERT(p_queue != NULL);
|
|
ASSERT(p_data != NULL);
|
|
|
|
size_t req_element_count = element_count;
|
|
|
|
if (element_count == 0)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
CRITICAL_REGION_ENTER();
|
|
|
|
if (p_queue->mode == NRF_QUEUE_MODE_OVERFLOW)
|
|
{
|
|
element_count = MIN(element_count, p_queue->size);
|
|
}
|
|
else
|
|
{
|
|
size_t available = nrf_queue_available_get(p_queue);
|
|
element_count = MIN(element_count, available);
|
|
}
|
|
|
|
queue_write(p_queue, p_data, element_count);
|
|
|
|
CRITICAL_REGION_EXIT();
|
|
|
|
NRF_LOG_INST_DEBUG(p_queue->p_log, "Put in %d elements (start address: 0x%08X), requested :%d",
|
|
element_count, p_data, req_element_count);
|
|
|
|
return element_count;
|
|
}
|
|
|
|
/**@brief Read elements from the queue. This function assumes that there are enough elements
|
|
* in the queue to read and that this process will not be interrupted.
|
|
*
|
|
* @param[in] p_queue Pointer to the nrf_queue_t instance.
|
|
* @param[out] p_data Pointer to the buffer where elements will be copied.
|
|
* @param[in] element_count Number of elements to read.
|
|
*/
|
|
static void queue_read(nrf_queue_t const * p_queue, void * p_data, uint32_t element_count)
|
|
{
|
|
size_t front = p_queue->p_cb->front;
|
|
size_t continuous = continous_items_get(p_queue, false);
|
|
void const * p_read_ptr = (void const *)((size_t)p_queue->p_buffer
|
|
+ front * p_queue->element_size);
|
|
|
|
if (element_count <= continuous)
|
|
{
|
|
memcpy(p_data,
|
|
p_read_ptr,
|
|
element_count * p_queue->element_size);
|
|
|
|
p_queue->p_cb->front = ((front + element_count) <= p_queue->size)
|
|
? (front + element_count)
|
|
: 0;
|
|
}
|
|
else
|
|
{
|
|
size_t first_read_length = continuous * p_queue->element_size;
|
|
memcpy(p_data,
|
|
p_read_ptr,
|
|
first_read_length);
|
|
|
|
size_t elements_left = element_count - continuous;
|
|
memcpy((void *)((size_t)p_data + first_read_length),
|
|
p_queue->p_buffer,
|
|
elements_left * p_queue->element_size);
|
|
|
|
p_queue->p_cb->front = elements_left;
|
|
}
|
|
}
|
|
|
|
ret_code_t nrf_queue_read(nrf_queue_t const * p_queue,
|
|
void * p_data,
|
|
size_t element_count)
|
|
{
|
|
ret_code_t status = NRF_SUCCESS;
|
|
|
|
ASSERT(p_queue != NULL);
|
|
ASSERT(p_data != NULL);
|
|
|
|
if (element_count == 0)
|
|
{
|
|
return NRF_SUCCESS;
|
|
}
|
|
|
|
CRITICAL_REGION_ENTER();
|
|
|
|
if (element_count <= queue_utilization_get(p_queue))
|
|
{
|
|
queue_read(p_queue, p_data, element_count);
|
|
}
|
|
else
|
|
{
|
|
status = NRF_ERROR_NOT_FOUND;
|
|
}
|
|
|
|
CRITICAL_REGION_EXIT();
|
|
|
|
NRF_LOG_INST_DEBUG(p_queue->p_log, "Read %d elements (start address: 0x%08X), status :%d",
|
|
element_count, p_data, status);
|
|
return status;
|
|
}
|
|
|
|
size_t nrf_queue_out(nrf_queue_t const * p_queue,
|
|
void * p_data,
|
|
size_t element_count)
|
|
{
|
|
ASSERT(p_queue != NULL);
|
|
ASSERT(p_data != NULL);
|
|
|
|
size_t req_element_count = element_count;
|
|
|
|
if (element_count == 0)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
CRITICAL_REGION_ENTER();
|
|
|
|
size_t utilization = queue_utilization_get(p_queue);
|
|
element_count = MIN(element_count, utilization);
|
|
|
|
queue_read(p_queue, p_data, element_count);
|
|
|
|
CRITICAL_REGION_EXIT();
|
|
|
|
NRF_LOG_INST_DEBUG(p_queue->p_log, "Out %d elements (start address: 0x%08X), requested :%d",
|
|
element_count, p_data, req_element_count);
|
|
return element_count;
|
|
}
|
|
|
|
void nrf_queue_reset(nrf_queue_t const * p_queue)
|
|
{
|
|
ASSERT(p_queue != NULL);
|
|
|
|
CRITICAL_REGION_ENTER();
|
|
|
|
memset(p_queue->p_cb, 0, sizeof(nrf_queue_cb_t));
|
|
|
|
CRITICAL_REGION_EXIT();
|
|
|
|
NRF_LOG_INST_DEBUG(p_queue->p_log, "Reset");
|
|
}
|
|
|
|
size_t nrf_queue_utilization_get(nrf_queue_t const * p_queue)
|
|
{
|
|
size_t utilization;
|
|
ASSERT(p_queue != NULL);
|
|
|
|
CRITICAL_REGION_ENTER();
|
|
|
|
utilization = queue_utilization_get(p_queue);
|
|
|
|
CRITICAL_REGION_EXIT();
|
|
|
|
return utilization;
|
|
}
|
|
|
|
bool nrf_queue_is_empty(nrf_queue_t const * p_queue)
|
|
{
|
|
ASSERT(p_queue != NULL);
|
|
size_t front = p_queue->p_cb->front;
|
|
size_t back = p_queue->p_cb->back;
|
|
return (front == back);
|
|
}
|
|
|
|
size_t nrf_queue_available_get(nrf_queue_t const * p_queue)
|
|
{
|
|
ASSERT(p_queue != NULL);
|
|
return p_queue->size - nrf_queue_utilization_get(p_queue);
|
|
}
|
|
|
|
size_t nrf_queue_max_utilization_get(nrf_queue_t const * p_queue)
|
|
{
|
|
ASSERT(p_queue != NULL);
|
|
return p_queue->p_cb->max_utilization;
|
|
}
|
|
|
|
void nrf_queue_max_utilization_reset(nrf_queue_t const * p_queue)
|
|
{
|
|
ASSERT(p_queue != NULL);
|
|
p_queue->p_cb->max_utilization = 0;
|
|
}
|
|
|
|
|
|
#endif // NRF_MODULE_ENABLED(NRF_QUEUE)
|