spider-bot/fw/nrf52/nrf5_sdk/components/libraries/queue/nrf_queue.c

581 lines
18 KiB
C

/**
* Copyright (c) 2016 - 2019, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(NRF_QUEUE)
#include "nrf_queue.h"
#include "app_util_platform.h"
#if NRF_QUEUE_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL NRF_QUEUE_CONFIG_LOG_LEVEL
#define NRF_LOG_INIT_FILTER_LEVEL NRF_QUEUE_CONFIG_LOG_INIT_FILTER_LEVEL
#define NRF_LOG_INFO_COLOR NRF_QUEUE_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR NRF_QUEUE_CONFIG_DEBUG_COLOR
#else
#define NRF_LOG_LEVEL 0
#endif // NRF_QUEUE_CONFIG_LOG_ENABLED
#include "nrf_log.h"
NRF_SECTION_DEF(nrf_queue, nrf_queue_t);
#if NRF_QUEUE_CLI_CMDS && NRF_CLI_ENABLED
#include "nrf_cli.h"
static void nrf_queue_status(nrf_cli_t const * p_cli, size_t argc, char **argv)
{
UNUSED_PARAMETER(argv);
if (nrf_cli_help_requested(p_cli))
{
nrf_cli_help_print(p_cli, NULL, 0);
return;
}
if (argc > 1)
{
nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Bad argument count");
return;
}
uint32_t num_of_instances = NRF_SECTION_ITEM_COUNT(nrf_queue, nrf_queue_t);
uint32_t i;
for (i = 0; i < num_of_instances; i++)
{
const nrf_queue_t * p_instance = NRF_SECTION_ITEM_GET(nrf_queue, nrf_queue_t, i);
uint32_t element_size = p_instance->element_size;
uint32_t size = p_instance->size;
uint32_t max_util = nrf_queue_max_utilization_get(p_instance);
uint32_t util = nrf_queue_utilization_get(p_instance);
const char * p_name = p_instance->p_name;
nrf_cli_fprintf(p_cli, NRF_CLI_NORMAL,
"%s\r\n\t- Element size:\t%d\r\n"
"\t- Usage:\t%u%% (%u out of %u elements)\r\n"
"\t- Maximum:\t%u%% (%u out of %u elements)\r\n"
"\t- Mode:\t\t%s\r\n\r\n",
p_name, element_size,
100ul * util/size, util,size,
100ul * max_util/size, max_util,size,
(p_instance->mode == NRF_QUEUE_MODE_OVERFLOW) ? "Overflow" : "No overflow");
}
}
// Register "queue" command and its subcommands in CLI.
NRF_CLI_CREATE_STATIC_SUBCMD_SET(nrf_queue_commands)
{
NRF_CLI_CMD(status, NULL, "Print status of queue instances.", nrf_queue_status),
NRF_CLI_SUBCMD_SET_END
};
NRF_CLI_CMD_REGISTER(queue, &nrf_queue_commands, "Commands for BALLOC management", nrf_queue_status);
#endif //NRF_QUEUE_CLI_CMDS
__STATIC_INLINE size_t circullar_buffer_size_get(nrf_queue_t const * p_queue)
{
static const uint8_t full_queue_indicator = 1;
/* When a queue is implemented as a cyclic buffer, it is not possible to
* distinguish a full queue from an empty queue. In order to solve this
* problem, the cyclic buffer has been implemented one element larger than
* the queue size.
*/
return p_queue->size + full_queue_indicator;
}
/**@brief Get next element index.
*
* @param[in] p_queue Pointer to the queue instance.
* @param[in] idx Current index.
*
* @return Next element index.
*/
__STATIC_INLINE size_t nrf_queue_next_idx(nrf_queue_t const * p_queue, size_t idx)
{
ASSERT(p_queue != NULL);
return (idx < p_queue->size) ? (idx + 1) : 0;
}
/**@brief Get current queue utilization. This function assumes that this process will not be interrupted.
*
* @param[in] p_queue Pointer to the queue instance.
*
* @return Current queue utilization.
*/
__STATIC_INLINE size_t queue_utilization_get(nrf_queue_t const * p_queue)
{
size_t front = p_queue->p_cb->front;
size_t back = p_queue->p_cb->back;
return (back >= front) ? (back - front) :
(circullar_buffer_size_get(p_queue) - front + back);
}
bool nrf_queue_is_full(nrf_queue_t const * p_queue)
{
ASSERT(p_queue != NULL);
size_t front = p_queue->p_cb->front;
size_t back = p_queue->p_cb->back;
return (nrf_queue_next_idx(p_queue, back) == front);
}
ret_code_t nrf_queue_push(nrf_queue_t const * p_queue, void const * p_element)
{
ret_code_t status = NRF_SUCCESS;
ASSERT(p_queue != NULL);
ASSERT(p_element != NULL);
CRITICAL_REGION_ENTER();
bool is_full = nrf_queue_is_full(p_queue);
if (!is_full || (p_queue->mode == NRF_QUEUE_MODE_OVERFLOW))
{
// Get write position.
size_t write_pos = p_queue->p_cb->back;
p_queue->p_cb->back = nrf_queue_next_idx(p_queue, p_queue->p_cb->back);
if (is_full)
{
// Overwrite the oldest element.
NRF_LOG_INST_WARNING(p_queue->p_log, "Queue full. Overwriting oldest element.");
p_queue->p_cb->front = nrf_queue_next_idx(p_queue, p_queue->p_cb->front);
}
// Write a new element.
switch (p_queue->element_size)
{
case sizeof(uint8_t):
((uint8_t *)p_queue->p_buffer)[write_pos] = *((uint8_t *)p_element);
break;
case sizeof(uint16_t):
((uint16_t *)p_queue->p_buffer)[write_pos] = *((uint16_t *)p_element);
break;
case sizeof(uint32_t):
((uint32_t *)p_queue->p_buffer)[write_pos] = *((uint32_t *)p_element);
break;
case sizeof(uint64_t):
((uint64_t *)p_queue->p_buffer)[write_pos] = *((uint64_t *)p_element);
break;
default:
memcpy((void *)((size_t)p_queue->p_buffer + write_pos * p_queue->element_size),
p_element,
p_queue->element_size);
break;
}
// Update utilization.
size_t utilization = queue_utilization_get(p_queue);
if (p_queue->p_cb->max_utilization < utilization)
{
p_queue->p_cb->max_utilization = utilization;
}
}
else
{
status = NRF_ERROR_NO_MEM;
}
CRITICAL_REGION_EXIT();
NRF_LOG_INST_DEBUG(p_queue->p_log, "pushed element 0x%08X, status:%d", p_element, status);
return status;
}
ret_code_t nrf_queue_generic_pop(nrf_queue_t const * p_queue,
void * p_element,
bool just_peek)
{
ret_code_t status = NRF_SUCCESS;
ASSERT(p_queue != NULL);
ASSERT(p_element != NULL);
CRITICAL_REGION_ENTER();
if (!nrf_queue_is_empty(p_queue))
{
// Get read position.
size_t read_pos = p_queue->p_cb->front;
// Update next read position.
if (!just_peek)
{
p_queue->p_cb->front = nrf_queue_next_idx(p_queue, p_queue->p_cb->front);
}
// Read element.
switch (p_queue->element_size)
{
case sizeof(uint8_t):
*((uint8_t *)p_element) = ((uint8_t *)p_queue->p_buffer)[read_pos];
break;
case sizeof(uint16_t):
*((uint16_t *)p_element) = ((uint16_t *)p_queue->p_buffer)[read_pos];
break;
case sizeof(uint32_t):
*((uint32_t *)p_element) = ((uint32_t *)p_queue->p_buffer)[read_pos];
break;
case sizeof(uint64_t):
*((uint64_t *)p_element) = ((uint64_t *)p_queue->p_buffer)[read_pos];
break;
default:
memcpy(p_element,
(void const *)((size_t)p_queue->p_buffer + read_pos * p_queue->element_size),
p_queue->element_size);
break;
}
}
else
{
status = NRF_ERROR_NOT_FOUND;
}
CRITICAL_REGION_EXIT();
NRF_LOG_INST_DEBUG(p_queue->p_log, "%s element 0x%08X, status:%d",
just_peek ? "peeked" : "popped", p_element, status);
return status;
}
/* Purpose of this function is to provide number of continous bytes in the queue's
* array before circullar buffer needs to wrapp.
*/
static size_t continous_items_get(nrf_queue_t const * p_queue, bool write)
{
size_t front = p_queue->p_cb->front;
size_t back = p_queue->p_cb->back;
/* Number of continous items for queue write operation */
if (write)
{
return (back >= front) ? circullar_buffer_size_get(p_queue) - back : front - back;
}
else
{
return (back >= front) ? back - front : circullar_buffer_size_get(p_queue) - front;
}
}
/**@brief Write elements to the queue. This function assumes that there is enough room in the queue
* to write the requested number of elements and that this process will not be interrupted.
*
* @param[in] p_queue Pointer to the nrf_queue_t instance.
* @param[in] p_data Pointer to the buffer with elements to write.
* @param[in] element_count Number of elements to write.
*/
static void queue_write(nrf_queue_t const * p_queue, void const * p_data, uint32_t element_count)
{
size_t prev_available = nrf_queue_available_get(p_queue);
size_t continuous = continous_items_get(p_queue, true);
void * p_write_ptr = (void *)((size_t)p_queue->p_buffer
+ p_queue->p_cb->back * p_queue->element_size);
if (element_count <= continuous)
{
memcpy(p_write_ptr,
p_data,
element_count * p_queue->element_size);
p_queue->p_cb->back = ((p_queue->p_cb->back + element_count) <= p_queue->size)
? (p_queue->p_cb->back + element_count)
: 0;
}
else
{
size_t first_write_length = continuous * p_queue->element_size;
memcpy(p_write_ptr,
p_data,
first_write_length);
size_t elements_left = element_count - continuous;
memcpy(p_queue->p_buffer,
(void const *)((size_t)p_data + first_write_length),
elements_left * p_queue->element_size);
p_queue->p_cb->back = elements_left;
if (prev_available < element_count)
{
// Overwrite the oldest elements.
p_queue->p_cb->front = nrf_queue_next_idx(p_queue, p_queue->p_cb->back);
}
}
// Update utilization.
size_t utilization = queue_utilization_get(p_queue);
if (p_queue->p_cb->max_utilization < utilization)
{
p_queue->p_cb->max_utilization = utilization;
}
}
ret_code_t nrf_queue_write(nrf_queue_t const * p_queue,
void const * p_data,
size_t element_count)
{
ret_code_t status = NRF_SUCCESS;
ASSERT(p_queue != NULL);
ASSERT(p_data != NULL);
ASSERT(element_count <= p_queue->size);
if (element_count == 0)
{
return NRF_SUCCESS;
}
CRITICAL_REGION_ENTER();
if ((nrf_queue_available_get(p_queue) >= element_count)
|| (p_queue->mode == NRF_QUEUE_MODE_OVERFLOW))
{
queue_write(p_queue, p_data, element_count);
}
else
{
status = NRF_ERROR_NO_MEM;
}
CRITICAL_REGION_EXIT();
NRF_LOG_INST_DEBUG(p_queue->p_log, "Write %d elements (start address: 0x%08X), status:%d",
element_count, p_data, status);
return status;
}
size_t nrf_queue_in(nrf_queue_t const * p_queue,
void const * p_data,
size_t element_count)
{
ASSERT(p_queue != NULL);
ASSERT(p_data != NULL);
size_t req_element_count = element_count;
if (element_count == 0)
{
return 0;
}
CRITICAL_REGION_ENTER();
if (p_queue->mode == NRF_QUEUE_MODE_OVERFLOW)
{
element_count = MIN(element_count, p_queue->size);
}
else
{
size_t available = nrf_queue_available_get(p_queue);
element_count = MIN(element_count, available);
}
queue_write(p_queue, p_data, element_count);
CRITICAL_REGION_EXIT();
NRF_LOG_INST_DEBUG(p_queue->p_log, "Put in %d elements (start address: 0x%08X), requested :%d",
element_count, p_data, req_element_count);
return element_count;
}
/**@brief Read elements from the queue. This function assumes that there are enough elements
* in the queue to read and that this process will not be interrupted.
*
* @param[in] p_queue Pointer to the nrf_queue_t instance.
* @param[out] p_data Pointer to the buffer where elements will be copied.
* @param[in] element_count Number of elements to read.
*/
static void queue_read(nrf_queue_t const * p_queue, void * p_data, uint32_t element_count)
{
size_t front = p_queue->p_cb->front;
size_t continuous = continous_items_get(p_queue, false);
void const * p_read_ptr = (void const *)((size_t)p_queue->p_buffer
+ front * p_queue->element_size);
if (element_count <= continuous)
{
memcpy(p_data,
p_read_ptr,
element_count * p_queue->element_size);
p_queue->p_cb->front = ((front + element_count) <= p_queue->size)
? (front + element_count)
: 0;
}
else
{
size_t first_read_length = continuous * p_queue->element_size;
memcpy(p_data,
p_read_ptr,
first_read_length);
size_t elements_left = element_count - continuous;
memcpy((void *)((size_t)p_data + first_read_length),
p_queue->p_buffer,
elements_left * p_queue->element_size);
p_queue->p_cb->front = elements_left;
}
}
ret_code_t nrf_queue_read(nrf_queue_t const * p_queue,
void * p_data,
size_t element_count)
{
ret_code_t status = NRF_SUCCESS;
ASSERT(p_queue != NULL);
ASSERT(p_data != NULL);
if (element_count == 0)
{
return NRF_SUCCESS;
}
CRITICAL_REGION_ENTER();
if (element_count <= queue_utilization_get(p_queue))
{
queue_read(p_queue, p_data, element_count);
}
else
{
status = NRF_ERROR_NOT_FOUND;
}
CRITICAL_REGION_EXIT();
NRF_LOG_INST_DEBUG(p_queue->p_log, "Read %d elements (start address: 0x%08X), status :%d",
element_count, p_data, status);
return status;
}
size_t nrf_queue_out(nrf_queue_t const * p_queue,
void * p_data,
size_t element_count)
{
ASSERT(p_queue != NULL);
ASSERT(p_data != NULL);
size_t req_element_count = element_count;
if (element_count == 0)
{
return 0;
}
CRITICAL_REGION_ENTER();
size_t utilization = queue_utilization_get(p_queue);
element_count = MIN(element_count, utilization);
queue_read(p_queue, p_data, element_count);
CRITICAL_REGION_EXIT();
NRF_LOG_INST_DEBUG(p_queue->p_log, "Out %d elements (start address: 0x%08X), requested :%d",
element_count, p_data, req_element_count);
return element_count;
}
void nrf_queue_reset(nrf_queue_t const * p_queue)
{
ASSERT(p_queue != NULL);
CRITICAL_REGION_ENTER();
memset(p_queue->p_cb, 0, sizeof(nrf_queue_cb_t));
CRITICAL_REGION_EXIT();
NRF_LOG_INST_DEBUG(p_queue->p_log, "Reset");
}
size_t nrf_queue_utilization_get(nrf_queue_t const * p_queue)
{
size_t utilization;
ASSERT(p_queue != NULL);
CRITICAL_REGION_ENTER();
utilization = queue_utilization_get(p_queue);
CRITICAL_REGION_EXIT();
return utilization;
}
bool nrf_queue_is_empty(nrf_queue_t const * p_queue)
{
ASSERT(p_queue != NULL);
size_t front = p_queue->p_cb->front;
size_t back = p_queue->p_cb->back;
return (front == back);
}
size_t nrf_queue_available_get(nrf_queue_t const * p_queue)
{
ASSERT(p_queue != NULL);
return p_queue->size - nrf_queue_utilization_get(p_queue);
}
size_t nrf_queue_max_utilization_get(nrf_queue_t const * p_queue)
{
ASSERT(p_queue != NULL);
return p_queue->p_cb->max_utilization;
}
void nrf_queue_max_utilization_reset(nrf_queue_t const * p_queue)
{
ASSERT(p_queue != NULL);
p_queue->p_cb->max_utilization = 0;
}
#endif // NRF_MODULE_ENABLED(NRF_QUEUE)