spider-bot/fw/nrf52/nrf5_sdk/components/iot/coap/coap_observe.c

689 lines
21 KiB
C

/**
* Copyright (c) 2014 - 2019, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <string.h>
#include "coap_observe_api.h"
#include "coap_observe.h"
#include "nrf_error.h"
#include "iot_common.h"
#include "sdk_common.h"
#include "sdk_config.h"
#include "coap.h"
#if IOT_COAP_CONFIG_LOG_ENABLED
#define NRF_LOG_MODULE_NAME coapobs
#define NRF_LOG_LEVEL IOT_COAP_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR IOT_COAP_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR IOT_COAP_CONFIG_DEBUG_COLOR
#include "nrf_log.h"
NRF_LOG_MODULE_REGISTER();
#define COAP_TRC NRF_LOG_DEBUG /**< Used for getting trace of execution in the module. */
#define COAP_ERR NRF_LOG_ERROR /**< Used for logging errors in the module. */
#define COAP_DUMP NRF_LOG_HEXDUMP_DEBUG /**< Used for dumping octet information to get details of bond information etc. */
#define COAP_ENTRY() COAP_TRC(">> %s", __func__)
#define COAP_EXIT() COAP_TRC("<< %s", __func__)
#else // IOT_COAP_CONFIG_LOG_ENABLED
#define COAP_TRC(...) /**< Disables traces. */
#define COAP_DUMP(...) /**< Disables dumping of octet streams. */
#define COAP_ERR(...) /**< Disables error logs. */
#define COAP_ENTRY(...)
#define COAP_EXIT(...)
#endif // IOT_COAP_CONFIG_LOG_ENABLED
#if (COAP_ENABLE_OBSERVE_SERVER == 1)
static coap_observer_t m_observers[COAP_OBSERVE_MAX_NUM_OBSERVERS];
static void observe_server_init(void)
{
COAP_ENTRY();
// Loop through the observer array and clear the memory.
for (uint32_t i = 0; i < COAP_OBSERVE_MAX_NUM_OBSERVERS; i++)
{
memset(&m_observers[i], 0, sizeof(coap_observer_t));
}
COAP_EXIT();
}
uint32_t internal_coap_observe_server_register(uint32_t * p_handle, coap_observer_t * p_observer)
{
COAP_ENTRY();
NULL_PARAM_CHECK(p_handle);
NULL_PARAM_CHECK(p_observer);
NULL_PARAM_MEMBER_CHECK(p_observer->p_resource_of_interest);
// Check if there is already a registered observer in the list to be reused.
uint32_t handle;
uint32_t err_code = coap_observe_server_search(&handle,
&p_observer->remote,
p_observer->p_resource_of_interest);
if (err_code == NRF_SUCCESS)
{
memcpy(&m_observers[handle], p_observer, sizeof(coap_observer_t));
*p_handle = handle;
return NRF_SUCCESS;
}
// Check if there is an available spot in the observer list.
for (uint32_t i = 0; i < COAP_OBSERVE_MAX_NUM_OBSERVERS; i++)
{
if (m_observers[i].p_resource_of_interest == NULL)
{
memcpy(&m_observers[i], p_observer, sizeof(coap_observer_t));
*p_handle = i;
return NRF_SUCCESS;
}
}
COAP_EXIT();
return (NRF_ERROR_NO_MEM | IOT_COAP_ERR_BASE);
}
uint32_t internal_coap_observe_server_unregister(uint32_t handle)
{
COAP_ENTRY();
if (handle >= COAP_OBSERVE_MAX_NUM_OBSERVERS)
{
return (NRF_ERROR_NOT_FOUND | IOT_COAP_ERR_BASE);
}
if (m_observers[handle].p_resource_of_interest == NULL)
{
return (NRF_ERROR_NOT_FOUND | IOT_COAP_ERR_BASE);
}
m_observers[handle].p_resource_of_interest = NULL;
COAP_EXIT();
return NRF_SUCCESS;
}
uint32_t internal_coap_observe_server_search(uint32_t * p_handle,
coap_remote_t * p_observer_addr,
coap_resource_t * p_resource)
{
NULL_PARAM_CHECK(p_handle);
NULL_PARAM_CHECK(p_observer_addr);
NULL_PARAM_CHECK(p_resource);
for (uint32_t i = 0; i < COAP_OBSERVE_MAX_NUM_OBSERVERS; i++)
{
if (m_observers[i].p_resource_of_interest == p_resource)
{
if (m_observers[i].remote.port_number == p_observer_addr->port_number)
{
if (memcmp(p_observer_addr->addr, m_observers[i].remote.addr, sizeof(p_observer_addr->addr)) == 0)
{
*p_handle = i;
return NRF_SUCCESS;
}
}
}
}
return (NRF_ERROR_NOT_FOUND | IOT_COAP_ERR_BASE);
}
uint32_t internal_coap_observe_server_next_get(coap_observer_t ** pp_observer,
coap_observer_t * p_observer,
coap_resource_t * p_resource)
{
NULL_PARAM_CHECK(p_resource);
NULL_PARAM_CHECK(pp_observer);
if (p_observer == NULL)
{
for (uint32_t i = 0; i < COAP_OBSERVE_MAX_NUM_OBSERVERS; i++)
{
if (m_observers[i].p_resource_of_interest == p_resource)
{
(*pp_observer) = &m_observers[i];
return NRF_SUCCESS;
}
}
}
else
{
uint32_t index_to_previous = (uint8_t)(((uint32_t)p_observer - (uint32_t)m_observers) / (uint32_t)sizeof(coap_observer_t));
for (uint32_t i = index_to_previous + 1; i < COAP_OBSERVE_MAX_NUM_OBSERVERS; i++)
{
if (m_observers[i].p_resource_of_interest == p_resource)
{
(*pp_observer) = &m_observers[i];
return NRF_SUCCESS;
}
}
}
(*pp_observer) = NULL;
return (NRF_ERROR_NOT_FOUND | IOT_COAP_ERR_BASE);
}
uint32_t internal_coap_observe_server_get(uint32_t handle, coap_observer_t ** pp_observer)
{
NULL_PARAM_CHECK(pp_observer);
if (handle >= COAP_OBSERVE_MAX_NUM_OBSERVERS)
{
return (NRF_ERROR_NOT_FOUND | IOT_COAP_ERR_BASE);
}
if (m_observers[handle].p_resource_of_interest == NULL)
{
return (NRF_ERROR_NOT_FOUND | IOT_COAP_ERR_BASE);
}
*pp_observer = &m_observers[handle];
return NRF_SUCCESS;
}
#else
#define observe_server_init(...)
#endif
#if (COAP_ENABLE_OBSERVE_CLIENT == 1)
static coap_observable_t m_observables[COAP_OBSERVE_MAX_NUM_OBSERVABLES];
static void observe_client_init(void)
{
// Loop through the observable array and clear the memory.
for (uint32_t i = 0; i < COAP_OBSERVE_MAX_NUM_OBSERVABLES; i++)
{
memset(&m_observables[i], 0, sizeof(coap_observable_t));
}
}
uint32_t internal_coap_observe_client_register(uint32_t * p_handle,
coap_observable_t * p_observable)
{
COAP_ENTRY();
NULL_PARAM_CHECK(p_handle);
NULL_PARAM_CHECK(p_observable);
NULL_PARAM_MEMBER_CHECK(p_observable->response_callback);
// Check if there is an available spot in the observer list.
for (uint32_t i = 0; i < COAP_OBSERVE_MAX_NUM_OBSERVABLES; i++)
{
if (m_observables[i].response_callback == NULL)
{
memcpy(&m_observables[i], p_observable, sizeof(coap_observable_t));
*p_handle = i;
return NRF_SUCCESS;
}
}
COAP_EXIT();
return (NRF_ERROR_NO_MEM | IOT_COAP_ERR_BASE);
}
uint32_t internal_coap_observe_client_unregister(uint32_t handle)
{
COAP_ENTRY();
if (handle >= COAP_OBSERVE_MAX_NUM_OBSERVABLES)
{
return (NRF_ERROR_NOT_FOUND | IOT_COAP_ERR_BASE);
}
if (m_observables[handle].response_callback == NULL)
{
return (NRF_ERROR_NOT_FOUND | IOT_COAP_ERR_BASE);
}
m_observables[handle].response_callback = NULL;
COAP_EXIT();
return NRF_SUCCESS;
}
uint32_t internal_coap_observe_client_search(uint32_t * p_handle, uint8_t * p_token, uint16_t token_len)
{
NULL_PARAM_CHECK(p_handle);
NULL_PARAM_CHECK(p_token);
for (uint32_t i = 0; i < COAP_OBSERVE_MAX_NUM_OBSERVABLES; i++)
{
if ((m_observables[i].response_callback != NULL) &&
(0 != m_observables[i].token_len) &&
(memcmp(m_observables[i].token, p_token, m_observables[i].token_len) == 0))
{
*p_handle = i;
return NRF_SUCCESS;
}
}
return (NRF_ERROR_NOT_FOUND | IOT_COAP_ERR_BASE);
}
uint32_t internal_coap_observe_client_get(uint32_t handle, coap_observable_t ** pp_observable)
{
NULL_PARAM_CHECK(pp_observable);
if (handle >= COAP_OBSERVE_MAX_NUM_OBSERVABLES)
{
return (NRF_ERROR_NOT_FOUND | IOT_COAP_ERR_BASE);
}
if (m_observables[handle].response_callback == NULL)
{
return (NRF_ERROR_NOT_FOUND | IOT_COAP_ERR_BASE);
}
*pp_observable = &m_observables[handle];
return NRF_SUCCESS;
}
uint32_t internal_coap_observe_client_next_get(coap_observable_t ** pp_observable,
uint32_t * p_handle,
coap_observable_t * p_observable)
{
NULL_PARAM_CHECK(pp_observable);
if (p_observable == NULL)
{
for (uint32_t i = 0; i < COAP_OBSERVE_MAX_NUM_OBSERVABLES; i++)
{
if (m_observables[i].response_callback != NULL)
{
(*pp_observable) = &m_observables[i];
(*p_handle) = i;
return NRF_SUCCESS;
}
}
}
else
{
uint32_t index_to_previous = (uint8_t)(((uint32_t)p_observable - (uint32_t)m_observables) / (uint32_t)sizeof(coap_observable_t));
for (uint32_t i = index_to_previous + 1; i < COAP_OBSERVE_MAX_NUM_OBSERVABLES; i++)
{
if (m_observables[i].response_callback != NULL)
{
(*pp_observable) = &m_observables[i];
(*p_handle) = i;
return NRF_SUCCESS;
}
}
}
(*pp_observable) = NULL;
COAP_MUTEX_UNLOCK();
return (NRF_ERROR_NOT_FOUND | IOT_COAP_ERR_BASE);
}
static uint32_t observe_opt_present(coap_message_t * p_message)
{
uint8_t index;
for (index = 0; index < p_message->options_count; index++)
{
if (p_message->options[index].number == COAP_OPT_OBSERVE)
{
return NRF_SUCCESS;
}
}
return NRF_ERROR_NOT_FOUND;
}
static void set_max_age(coap_observable_t * observable, coap_message_t * p_response)
{
uint8_t index;
for (index = 0; index < p_response->options_count; index++)
{
if (p_response->options[index].number == COAP_OPT_MAX_AGE)
{
uint32_t max_age;
observable->max_age = coap_opt_uint_decode(&max_age,
p_response->options[index].length,
p_response->options[index].p_data);
observable->max_age = max_age;
return;
}
}
// Max-Age option is not present, set default value to 60.
observable->max_age = 60;
}
void coap_observe_client_send_handle(coap_message_t * p_request)
{
COAP_ENTRY();
if (p_request->header.code == COAP_CODE_GET)
{
uint32_t observe_option = 0;
if (observe_opt_present(p_request) == NRF_SUCCESS)
{
// Locate option and check value.
uint8_t index;
for (index = 0; index < p_request->options_count; index++)
{
if (p_request->options[index].number == COAP_OPT_OBSERVE)
{
uint32_t err_code = coap_opt_uint_decode(&observe_option,
p_request->options[index].length,
p_request->options[index].p_data);
if (err_code != NRF_SUCCESS)
{
return;
}
break;
}
}
}
if (observe_option == 1)
{
// Un-register observable instance.
uint32_t handle;
uint32_t err_code = internal_coap_observe_client_search(&handle,
p_request->token,
p_request->header.token_len);
if (err_code == NRF_SUCCESS)
{
(void)internal_coap_observe_client_unregister(handle);
COAP_TRC("OBSERVE=1 in request, client_unregister handle: %i", handle);
}
}
}
COAP_EXIT();
}
void coap_observe_client_response_handle(coap_message_t * p_response, coap_queue_item_t * p_item)
{
COAP_ENTRY();
if (observe_opt_present(p_response) == NRF_SUCCESS)
{
if (p_item == NULL)
{
// Search for the token in the observable list.
uint32_t handle;
uint32_t err_code = internal_coap_observe_client_search(&handle, p_response->token, p_response->header.token_len);
if (err_code == NRF_SUCCESS)
{
// Fetch the observable.
coap_observable_t * p_observable;
err_code = internal_coap_observe_client_get(handle, &p_observable);
if (err_code == NRF_SUCCESS)
{
// Update max-age to the newly recieved message.
set_max_age(p_observable, p_response);
COAP_MUTEX_UNLOCK();
// Callback to the application.
p_observable->response_callback(NRF_SUCCESS, NULL, p_response);
COAP_MUTEX_LOCK();
COAP_TRC("Notification received on handle: %i", handle);
#ifdef COAP_AUTOMODE
if (p_response->header.type == COAP_TYPE_CON)
{
// Reply an ACK upon CON message.
}
else if (p_response->header.type == COAP_TYPE_RST)
{
// Remove observable from list.
}
#endif
}
else
{
#ifdef COAP_AUTOMODE
if (p_response->header.type == COAP_TYPE_CON)
{
// Reply reset upon CON message when observer is not located.
}
#endif
}
}
else
{
// Send RST message back to server to indicate there is no one listening.
}
}
else // p_item set.
{
// If there is no observable instance created yet for thit token, add it.
uint32_t handle;
uint32_t err_code = internal_coap_observe_client_search(&handle, p_response->token, p_response->header.token_len);
if (err_code == (NRF_ERROR_NOT_FOUND | IOT_COAP_ERR_BASE))
{
// If the response is a valid response, add the observable resource.
if (p_response->header.code == COAP_CODE_205_CONTENT)
{
coap_observable_t observable;
// Token Length.
observable.token_len = p_response->header.token_len;
// Remote.
memcpy(&observable.remote, &p_response->remote, sizeof(coap_remote_t));
// Token.
memcpy(observable.token, p_response->token, observable.token_len);
// Callback to be called upon notification.
observable.response_callback = p_item->callback;
// Update max-age to the newly recieved message.
set_max_age(&observable, p_response);
// Register the observable.
uint32_t observable_resource_handle;
(void)internal_coap_observe_client_register(&observable_resource_handle, &observable);
// TODO: error check
COAP_TRC("Subscription response received, client_register handle: %i", observable_resource_handle);
}
}
}
}
else // COAP_OPT_OBSERVE not present
{
uint32_t handle;
uint32_t err_code = internal_coap_observe_client_search(&handle, p_response->token, p_response->header.token_len);
if (err_code == NRF_SUCCESS)
{
(void)internal_coap_observe_client_unregister(handle);
COAP_TRC("OBSERVE not present in notification, client_unregister handle: %i", handle);
}
}
COAP_EXIT();
}
#else
#define observe_client_init(...)
#endif
void internal_coap_observe_init(void)
{
observe_server_init();
observe_client_init();
}
#if (COAP_ENABLE_OBSERVE_SERVER == 1)
uint32_t coap_observe_server_register(uint32_t * p_handle, coap_observer_t * p_observer)
{
COAP_MUTEX_UNLOCK();
uint32_t err_code = internal_coap_observe_server_register(p_handle, p_observer);
COAP_MUTEX_UNLOCK();
return err_code;
}
uint32_t coap_observe_server_unregister(uint32_t handle)
{
COAP_MUTEX_UNLOCK();
uint32_t err_code = internal_coap_observe_server_unregister(handle);
COAP_MUTEX_UNLOCK();
return err_code;
}
uint32_t coap_observe_server_search(uint32_t * p_handle, coap_remote_t * p_observer_addr, coap_resource_t * p_resource)
{
COAP_MUTEX_UNLOCK();
uint32_t err_code = internal_coap_observe_server_search(p_handle, p_observer_addr, p_resource);
COAP_MUTEX_UNLOCK();
return err_code;
}
uint32_t coap_observe_server_next_get(coap_observer_t ** pp_observer, coap_observer_t * p_observer, coap_resource_t * p_resource)
{
COAP_MUTEX_UNLOCK();
uint32_t err_code = internal_coap_observe_server_next_get(pp_observer, p_observer, p_resource);
COAP_MUTEX_UNLOCK();
return err_code;
}
uint32_t coap_observe_server_get(uint32_t handle, coap_observer_t ** pp_observer)
{
COAP_MUTEX_UNLOCK();
uint32_t err_code = internal_coap_observe_server_get(handle, pp_observer);
COAP_MUTEX_UNLOCK();
return err_code;
}
#endif // COAP_ENABLE_OBSERVE_SERVER = 1
#if (COAP_ENABLE_OBSERVE_CLIENT == 1)
uint32_t coap_observe_client_register(uint32_t * p_handle, coap_observable_t * p_observable)
{
COAP_MUTEX_UNLOCK();
uint32_t err_code = internal_coap_observe_client_register(p_handle, p_observable);
COAP_MUTEX_UNLOCK();
return err_code;
}
uint32_t coap_observe_client_unregister(uint32_t handle)
{
COAP_MUTEX_UNLOCK();
uint32_t err_code = internal_coap_observe_client_unregister(handle);
COAP_MUTEX_UNLOCK();
return err_code;
}
uint32_t coap_observe_client_search(uint32_t * p_handle, uint8_t * p_token, uint16_t token_len)
{
COAP_MUTEX_UNLOCK();
uint32_t err_code = internal_coap_observe_client_search(p_handle, p_token, token_len);
COAP_MUTEX_UNLOCK();
return err_code;
}
uint32_t coap_observe_client_get(uint32_t handle, coap_observable_t ** pp_observable)
{
COAP_MUTEX_UNLOCK();
uint32_t err_code = internal_coap_observe_client_get(handle, pp_observable);
COAP_MUTEX_UNLOCK();
return err_code;
}
uint32_t coap_observe_client_next_get(coap_observable_t ** pp_observable, uint32_t * p_handle, coap_observable_t * p_observable)
{
COAP_MUTEX_UNLOCK();
uint32_t err_code = internal_coap_observe_client_next_get(pp_observable, p_handle, p_observable);
COAP_MUTEX_UNLOCK();
return err_code;
}
#endif // COAP_ENABLE_OBSERVE_CLIENT == 1