spider-bot/fw/nrf52/nrf5_sdk/components/iot/socket/common/socket.c

747 lines
22 KiB
C

/**
* Copyright (c) 2015 - 2019, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "nordic_common.h"
#include "sdk_common.h"
#include "sdk_config.h"
#include "nrf_sdm.h"
#include "app_scheduler.h"
#include "app_timer.h"
#include "iot_common.h"
#include "app_error.h"
#include "socket_api.h"
#include "socket_common.h"
#include "socket_trace.h"
#include "sdk_os.h"
#include "transport_if.h"
#include "portdb.h"
#include "errno.h"
#include "mem_manager.h"
#include "ipv6_parse.h"
#include "netinet/in.h"
#include "unistd.h"
#include "sdk_os.h"
#include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h"
#ifndef SOCKET_ENABLE_API_PARAM_CHECK
#define SOCKET_ENABLE_API_PARAM_CHECK 0
#endif
#include "socket_config.h"
#if SOCKET_CONFIG_LOG_ENABLED == 1
NRF_LOG_MODULE_REGISTER();
#endif
/**
* @defgroup api_param_check API Parameters check macros.
*
* @details Macros that verify parameters passed to the module in the APIs. These macros
* could be mapped to nothing in final versions of code to save execution and size.
* SOCKET_ENABLE_API_PARAM_CHECK should be set to 0 to disable these checks.
*
* @{
*/
#if SOCKET_ENABLE_API_PARAM_CHECK == 1
/**@brief Macro to check is module is initialized before requesting one of the module procedures. */
#define VERIFY_MODULE_IS_INITIALIZED() \
do { \
if (m_initialization_state == false) \
{ \
return (SDK_ERR_MODULE_NOT_INITIALIZED | IOT_SOCKET_ERR_BASE);\
} \
} while (0)
/**
* @brief Verify NULL parameters are not passed to API by application.
*/
#define NULL_PARAM_CHECK(PARAM) \
do { \
if ((PARAM) == NULL) \
{ \
set_errno(EFAULT); \
return -1; \
} \
} while (0)
/**
* @brief Verify socket id passed on the API by application is valid.
*/
#define VERIFY_SOCKET_ID(ID) \
do { \
if (((ID) < 0) || ((ID) >= NUM_SOCKETS)) \
{ \
set_errno(EBADF); \
return -1; \
} \
} while (0)
#else
#define VERIFY_MODULE_IS_INITIALIZED()
#define NULL_PARAM_CHECK(PARAM)
#define VERIFY_SOCKET_ID(ID)
#endif
/** @} */
#define SOCKET_MUTEX_INIT() SDK_MUTEX_INIT(m_socket_mtx);
#define SOCKET_MUTEX_LOCK() SDK_MUTEX_LOCK(m_socket_mtx)
#define SOCKET_MUTEX_UNLOCK() SDK_MUTEX_UNLOCK(m_socket_mtx)
// note: one extra for configuration socket
#define NUM_SOCKETS SOCKET_MAX_SOCKET_COUNT + 1
SDK_MUTEX_DEFINE(m_socket_mtx) /**< Mutex for protecting m_socket_table (not individual entries). */
#define SCHED_QUEUE_SIZE 16 /**< Maximum number of events in the scheduler queue. */
#define SCHED_MAX_EVENT_DATA_SIZE 192 /**< Maximum size of scheduler events. */
static bool m_initialization_state = false; /**< Variable to maintain module initialization state. */
static volatile bool m_interface_up = false; /**< Interface state. */
static socket_t m_socket_table[NUM_SOCKETS]; /**< Socket table. */
const struct in6_addr in6addr_any = { {0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, /**< IPv6 anycast address. */
0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u} };
#if defined (NRF_LOG_ENABLED) && (NRF_LOG_ENABLED == 1)
void log_init(void)
{
ret_code_t err_code = NRF_LOG_INIT(NULL);
APP_ERROR_CHECK(err_code);
NRF_LOG_DEFAULT_BACKENDS_INIT();
}
#else // defined (NRF_LOG_ENABLED) && (NRF_LOG_ENABLED == 1)
void log_init(void)
{
;
}
#endif // defined (NRF_LOG_ENABLED) && (NRF_LOG_ENABLED == 1)
uint32_t socket_init(void)
{
memset(m_socket_table, 0, sizeof(m_socket_table));
SOCKET_MUTEX_INIT();
log_init();
uint32_t err_code = nrf_mem_init();
APP_ERROR_CHECK(err_code);
APP_SCHED_INIT(SCHED_MAX_EVENT_DATA_SIZE, SCHED_QUEUE_SIZE);
err_code = app_timer_init();
APP_ERROR_CHECK(err_code);
err_code = config_socket_init();
APP_ERROR_CHECK(err_code);
#if SOCKET_TRANSPORT_ENABLE == 1
err_code = portdb_init(SOCKET_MAX_SOCKET_COUNT);
APP_ERROR_CHECK(err_code);
transport_handler_init();
#endif
config_socket_start();
m_initialization_state = true;
SOCKET_TRACE("Socket init complete");
return NRF_SUCCESS;
}
/**
* Finds a free entry in the socket table, marks it as used and returns it. Returns -1 if no entry
* was found.
*/
static int socket_allocate(socket_t ** pp_socket)
{
int ret_sock = -1;
SOCKET_MUTEX_LOCK();
for (int sock = 0; sock < NUM_SOCKETS; sock++)
{
SOCKET_TRACE("Looking at socket %d with state %d", (int)sock, m_socket_table[sock].so_state);
if (m_socket_table[sock].so_state == STATE_CLOSED)
{
m_socket_table[sock].so_state = STATE_OPEN;
ret_sock = sock;
*pp_socket = &m_socket_table[sock];
break;
}
}
if (ret_sock < 0)
{
set_errno(EMFILE);
}
SOCKET_MUTEX_UNLOCK();
return ret_sock;
}
static socket_t * socket_find(int sock)
{
SOCKET_MUTEX_LOCK();
socket_t * p_socket = &m_socket_table[sock];
SOCKET_MUTEX_UNLOCK();
return p_socket;
}
static void socket_free(int sock)
{
SOCKET_TRACE("Freeing socket %d", (int)sock);
SOCKET_MUTEX_LOCK();
memset(&m_socket_table[sock], 0, sizeof(m_socket_table[sock]));
m_socket_table[sock].so_state = STATE_CLOSED;
SOCKET_MUTEX_UNLOCK();
}
#if SOCKET_TRANSPORT_ENABLE == 1
void transport_interface_up(void)
{
m_interface_up = true;
}
void transport_interface_down(void)
{
m_interface_up = false;
for (int sock = 0; sock < NUM_SOCKETS; sock++)
{
(void) close(sock);
}
}
#endif
int fcntl(int fd, int cmd, int flags)
{
VERIFY_MODULE_IS_INITIALIZED();
VERIFY_SOCKET_ID(fd);
if (!((cmd == F_SETFL) || (cmd == F_GETFL)))
{
set_errno(EINVAL);
return -1;
}
socket_t * p_socket = socket_find(fd);
if (cmd == F_SETFL)
{
p_socket->so_flags = flags;
}
else if (cmd == F_GETFL)
{
return p_socket->so_flags;
}
return 0;
}
static void socket_set_errno(uint32_t err_code)
{
switch (err_code) {
case UDP_INTERFACE_NOT_READY: // fallthrough
case SOCKET_INTERFACE_NOT_READY:
set_errno(ENETDOWN);
break;
case SOCKET_WOULD_BLOCK:
set_errno(EAGAIN);
break;
case SOCKET_NO_ROUTE:
set_errno(ENETUNREACH);
break;
case NRF_ERROR_NO_MEM: // fallthrough
case SOCKET_NO_MEM:
set_errno(ENOMEM);
break;
case SOCKET_TIMEOUT:
set_errno(ETIMEDOUT);
break;
case SOCKET_NO_AVAILABLE_PORTS:
set_errno(EMFILE);
break;
case SOCKET_PORT_IN_USE: // fallthrough
case SOCKET_ADDRESS_IN_USE:
set_errno(EADDRINUSE);
break;
case SOCKET_INVALID_PARAM:
set_errno(EINVAL);
break;
case SOCKET_UNSUPPORTED_PROTOCOL:
set_errno(EPROTONOSUPPORT);
break;
case SOCKET_NOT_CONNECTED:
set_errno(ENOTCONN);
break;
}
}
int socket(socket_family_t family, socket_type_t type, socket_protocol_t protocol)
{
if (m_initialization_state == false)
{
(void) socket_init();
}
VERIFY_MODULE_IS_INITIALIZED();
int ret_sock = -1;
socket_t * p_socket = NULL;
int sock = socket_allocate(&p_socket);
SOCKET_TRACE("Got value %d from allocate", (int)sock);
if (sock >= 0)
{
p_socket->so_params.so_family = family;
p_socket->so_params.so_protocol = protocol;
p_socket->so_params.so_type = type;
p_socket->so_transport = NULL;
if (family == AF_INET6)
{
#if SOCKET_TRANSPORT_ENABLE == 1
p_socket->so_transport = &transport_impl;
#else
set_errno(EAFNOSUPPORT);
#endif
}
else if (family == AF_NRF_CFG || family == AF_NRF_CFG_INTERNAL)
{
p_socket->so_transport = &config_socket_transport;
}
else
{
set_errno(EAFNOSUPPORT);
}
if (p_socket->so_transport != NULL)
{
uint32_t err_code = p_socket->so_transport->open(p_socket);
socket_set_errno(err_code);
ret_sock = (err_code == NRF_SUCCESS) ? sock : ret_sock;
}
if (ret_sock < 0)
{
socket_free(sock);
}
}
SOCKET_TRACE("Returning socket value %d", (int)ret_sock);
return ret_sock;
}
static uint32_t wait_interface_up(void)
{
SOCKET_TRACE("Waiting for interface to come up");
uint32_t err_code = NRF_SUCCESS;
while (err_code == NRF_SUCCESS && m_interface_up == false)
{
err_code = socket_wait();
}
if (m_interface_up == true)
{
SOCKET_TRACE("Interface is up!");
}
return err_code;
}
static uint32_t socket_interface_up(bool is_blocking)
{
uint32_t err_code = NRF_SUCCESS;
if (m_interface_up == false)
{
if (is_blocking)
{
(void) wait_interface_up();
}
}
if (m_interface_up == false)
{
err_code = SOCKET_INTERFACE_NOT_READY;
}
return err_code;
}
int connect(int sock, const void * p_addr, socklen_t addrlen)
{
VERIFY_MODULE_IS_INITIALIZED();
VERIFY_SOCKET_ID(sock);
NULL_PARAM_CHECK(p_addr);
socket_t * p_socket = socket_find(sock);
bool is_blocking = ((p_socket->so_flags & O_NONBLOCK) == 0);
int ret = -1;
uint32_t err_code = socket_interface_up(is_blocking);
if (err_code != NRF_SUCCESS)
{
socket_set_errno(err_code);
}
else if (p_socket->so_state == STATE_OPEN)
{
err_code = p_socket->so_transport->connect(p_socket, p_addr, addrlen);
if (err_code == NRF_SUCCESS)
{
p_socket->so_state = STATE_CONNECTED;
ret = 0;
}
socket_set_errno(err_code);
}
else if (p_socket->so_state == STATE_CONNECTED)
{
set_errno(EISCONN);
}
else if (p_socket->so_state == STATE_CLOSED)
{
set_errno(EBADF);
}
return ret;
}
ssize_t sendto(int sock,
const void * p_buf,
size_t buflen,
int flags,
const void * p_servaddr,
socklen_t addrlen)
{
VERIFY_MODULE_IS_INITIALIZED();
VERIFY_SOCKET_ID(sock);
NULL_PARAM_CHECK(p_buf);
socket_t * p_socket = socket_find(sock);
if ((p_socket->so_flags & O_NONBLOCK) != 0 &&
(flags & MSG_WAITALL) == 0)
{
flags |= MSG_DONTWAIT;
}
uint32_t err_code = socket_interface_up(((p_socket->so_flags & O_NONBLOCK) == 0) || ((flags & MSG_DONTWAIT) == 0));
ssize_t ret = -1;
if (err_code == NRF_SUCCESS)
{
err_code = p_socket->so_transport->send(p_socket, p_buf, buflen, flags, p_servaddr, addrlen);
if (err_code == NRF_SUCCESS)
{
ret = (ssize_t) buflen;
}
}
socket_set_errno(err_code);
return ret;
}
ssize_t send(int sock, const void * p_buf, size_t buflen, int flags)
{
return sendto(sock, p_buf, buflen, flags, NULL, 0);
}
ssize_t write(int sock, const void * p_buf, size_t buflen)
{
return send(sock, p_buf, buflen, 0);
}
ssize_t recvfrom(int sock,
void * p_buf,
size_t buf_size,
int flags,
void * p_cliaddr,
socklen_t * p_addrlen)
{
VERIFY_MODULE_IS_INITIALIZED();
VERIFY_SOCKET_ID(sock);
NULL_PARAM_CHECK(p_buf);
socket_t * p_socket = socket_find(sock);
ssize_t ret = -1;
uint32_t recv_size = buf_size;
uint32_t err_code = p_socket->so_transport->recv(p_socket,
p_buf,
&recv_size,
flags,
p_cliaddr,
p_addrlen);
if (err_code == NRF_SUCCESS)
{
ret = (ssize_t) recv_size;
}
socket_set_errno(err_code);
return ret;
}
ssize_t recv(int sock, void * p_buf, size_t buf_size, int flags)
{
return recvfrom(sock, p_buf, buf_size, flags, NULL, NULL);
}
ssize_t read(int sock, void * p_buf, size_t buf_size)
{
return recv(sock, p_buf, buf_size, 0);
}
int setsockopt(int sock,
socket_opt_lvl_t level,
int optname,
const void * p_optval,
socklen_t optlen)
{
VERIFY_MODULE_IS_INITIALIZED();
VERIFY_SOCKET_ID(sock);
socket_t * p_socket = socket_find(sock);
uint32_t err_code = p_socket->so_transport->setsockopt(p_socket,
level,
optname,
p_optval,
optlen);
socket_set_errno(err_code);
return (err_code == NRF_SUCCESS ? 0 : -1);
}
int getsockopt(int sock, socket_opt_lvl_t level, int optname, void * p_optval, socklen_t * p_optlen)
{
VERIFY_MODULE_IS_INITIALIZED();
VERIFY_SOCKET_ID(sock);
socket_t * p_socket = socket_find(sock);
uint32_t err_code = p_socket->so_transport->getsockopt(p_socket,
level,
optname,
p_optval,
p_optlen);
socket_set_errno(err_code);
return (err_code == NRF_SUCCESS ? 0 : -1);
}
int bind(int sock, const void * p_addr, socklen_t addrlen)
{
VERIFY_MODULE_IS_INITIALIZED();
VERIFY_SOCKET_ID(sock);
NULL_PARAM_CHECK(p_addr);
socket_t * p_socket = socket_find(sock);
bool is_blocking = ((p_socket->so_flags & O_NONBLOCK) == 0);
int ret = -1;
uint32_t err_code = socket_interface_up(is_blocking);
if (err_code == NRF_SUCCESS)
{
err_code = p_socket->so_transport->bind(p_socket, p_addr, addrlen);
}
if (err_code == NRF_SUCCESS)
{
ret = 0;
}
socket_set_errno(err_code);
return ret;
}
int listen(int sock, int backlog)
{
VERIFY_MODULE_IS_INITIALIZED();
VERIFY_SOCKET_ID(sock);
socket_t * p_socket = socket_find(sock);
uint32_t err_code = p_socket->so_transport->listen(p_socket, backlog);
return (err_code == NRF_SUCCESS ? 0 : -1);
}
int accept(int sock, void * p_cliaddr, socklen_t * p_addrlen)
{
VERIFY_MODULE_IS_INITIALIZED();
VERIFY_SOCKET_ID(sock);
NULL_PARAM_CHECK(p_cliaddr);
NULL_PARAM_CHECK(p_addrlen);
socket_t * p_socket = socket_find(sock);
int ret = -1;
if (p_socket->so_params.so_type != SOCK_STREAM)
{
set_errno(EOPNOTSUPP);
}
else
{
uint32_t err_code = NRF_SUCCESS;
socket_t * p_client = NULL;
int sock_cli = socket_allocate(&p_client);
if (sock_cli >= 0)
{
p_client->so_params = p_socket->so_params;
p_client->so_state = STATE_CONNECTED;
p_client->so_transport = p_socket->so_transport;
err_code = p_socket->so_transport->accept(p_socket, p_client, p_cliaddr, p_addrlen);
}
if (err_code == NRF_SUCCESS)
{
ret = sock_cli;
}
else
{
socket_set_errno(err_code);
socket_free(sock_cli);
}
}
return ret;
}
int close(int sock)
{
VERIFY_MODULE_IS_INITIALIZED();
VERIFY_SOCKET_ID(sock);
socket_t * p_socket = socket_find(sock);
int ret = 0;
if (p_socket->so_state != STATE_CLOSED)
{
uint32_t err_code = p_socket->so_transport->close(p_socket);
ret = (err_code == NRF_SUCCESS) ? 0 : -1;
SOCKET_TRACE("Close socket %d: ret: %d", (int)sock, ret);
socket_free(sock);
}
return ret;
}
int fd_set_cmp(fd_set * set_a, fd_set * set_b)
{
int ret = 0;
if (set_a != NULL && set_b != NULL)
{
for (uint32_t i = 0; i < FD_SETSIZE; i++)
{
if (FD_ISSET(i, set_a) != FD_ISSET(i, set_b))
{
ret = 1;
break;
}
}
}
return ret;
}
int select(int nfds,
fd_set * p_readset,
fd_set * p_writeset,
fd_set * p_exceptset,
const struct timeval * p_timeout)
{
VERIFY_SOCKET_ID(nfds - 1);
// Approximately 10 ms sleep between each iteration
uint32_t timestep = 10000;
uint32_t endtime = 0;
if (p_timeout != NULL)
{
endtime = (p_timeout->tv_sec * 1000000) + p_timeout->tv_usec;
}
fd_set readset;
FD_ZERO(&readset);
fd_set writeset;
FD_ZERO(&writeset);
fd_set exceptset;
FD_ZERO(&exceptset);
#define SELECT_CHECK_SET(in_set, out_set, evt_var) \
if ((in_set) != NULL) \
{ \
if (FD_ISSET(sock, (in_set)) && (evt_var) > 0) \
{ \
FD_SET(sock, (out_set)); \
num_ready++; \
} \
else \
{ \
FD_CLR(sock, (out_set)); \
} \
}
int num_ready = 0;
uint32_t err_code = NRF_SUCCESS;
while (err_code == NRF_SUCCESS)
{
for (int sock = 0; sock < nfds; sock++)
{
socket_t * p_socket = socket_find(sock);
SELECT_CHECK_SET(p_readset, &readset, p_socket->so_read_evt);
SELECT_CHECK_SET(p_writeset, &writeset, p_socket->so_write_evt);
SELECT_CHECK_SET(p_exceptset, &exceptset, p_socket->so_except_evt);
}
// TODO: Check out how app events queue up while we checked the socket
if (fd_set_cmp(p_readset, &readset) == 0 &&
fd_set_cmp(p_writeset, &writeset) == 0 &&
fd_set_cmp(p_exceptset, &exceptset) == 0)
{
break;
}
else
{
if (p_timeout == NULL)
{
err_code = socket_wait();
}
else if (endtime - timestep < endtime)
{
(void) usleep(timestep);
endtime -= timestep;
}
else
{
break;
}
}
}
return num_ready;
}