747 lines
22 KiB
C
747 lines
22 KiB
C
/**
|
|
* Copyright (c) 2015 - 2019, Nordic Semiconductor ASA
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form, except as embedded into a Nordic
|
|
* Semiconductor ASA integrated circuit in a product or a software update for
|
|
* such product, must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other
|
|
* materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
|
|
* contributors may be used to endorse or promote products derived from this
|
|
* software without specific prior written permission.
|
|
*
|
|
* 4. This software, with or without modification, must only be used with a
|
|
* Nordic Semiconductor ASA integrated circuit.
|
|
*
|
|
* 5. Any software provided in binary form under this license must not be reverse
|
|
* engineered, decompiled, modified and/or disassembled.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
|
|
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
|
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
#include "nordic_common.h"
|
|
#include "sdk_common.h"
|
|
#include "sdk_config.h"
|
|
#include "nrf_sdm.h"
|
|
#include "app_scheduler.h"
|
|
#include "app_timer.h"
|
|
#include "iot_common.h"
|
|
#include "app_error.h"
|
|
#include "socket_api.h"
|
|
#include "socket_common.h"
|
|
#include "socket_trace.h"
|
|
#include "sdk_os.h"
|
|
#include "transport_if.h"
|
|
#include "portdb.h"
|
|
#include "errno.h"
|
|
#include "mem_manager.h"
|
|
#include "ipv6_parse.h"
|
|
#include "netinet/in.h"
|
|
#include "unistd.h"
|
|
#include "sdk_os.h"
|
|
#include "nrf_log_ctrl.h"
|
|
#include "nrf_log_default_backends.h"
|
|
|
|
#ifndef SOCKET_ENABLE_API_PARAM_CHECK
|
|
#define SOCKET_ENABLE_API_PARAM_CHECK 0
|
|
#endif
|
|
|
|
#include "socket_config.h"
|
|
|
|
#if SOCKET_CONFIG_LOG_ENABLED == 1
|
|
NRF_LOG_MODULE_REGISTER();
|
|
#endif
|
|
|
|
/**
|
|
* @defgroup api_param_check API Parameters check macros.
|
|
*
|
|
* @details Macros that verify parameters passed to the module in the APIs. These macros
|
|
* could be mapped to nothing in final versions of code to save execution and size.
|
|
* SOCKET_ENABLE_API_PARAM_CHECK should be set to 0 to disable these checks.
|
|
*
|
|
* @{
|
|
*/
|
|
#if SOCKET_ENABLE_API_PARAM_CHECK == 1
|
|
|
|
/**@brief Macro to check is module is initialized before requesting one of the module procedures. */
|
|
#define VERIFY_MODULE_IS_INITIALIZED() \
|
|
do { \
|
|
if (m_initialization_state == false) \
|
|
{ \
|
|
return (SDK_ERR_MODULE_NOT_INITIALIZED | IOT_SOCKET_ERR_BASE);\
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
/**
|
|
* @brief Verify NULL parameters are not passed to API by application.
|
|
*/
|
|
#define NULL_PARAM_CHECK(PARAM) \
|
|
do { \
|
|
if ((PARAM) == NULL) \
|
|
{ \
|
|
set_errno(EFAULT); \
|
|
return -1; \
|
|
} \
|
|
} while (0)
|
|
|
|
/**
|
|
* @brief Verify socket id passed on the API by application is valid.
|
|
*/
|
|
#define VERIFY_SOCKET_ID(ID) \
|
|
do { \
|
|
if (((ID) < 0) || ((ID) >= NUM_SOCKETS)) \
|
|
{ \
|
|
set_errno(EBADF); \
|
|
return -1; \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
#else
|
|
|
|
#define VERIFY_MODULE_IS_INITIALIZED()
|
|
#define NULL_PARAM_CHECK(PARAM)
|
|
#define VERIFY_SOCKET_ID(ID)
|
|
#endif
|
|
|
|
/** @} */
|
|
#define SOCKET_MUTEX_INIT() SDK_MUTEX_INIT(m_socket_mtx);
|
|
#define SOCKET_MUTEX_LOCK() SDK_MUTEX_LOCK(m_socket_mtx)
|
|
#define SOCKET_MUTEX_UNLOCK() SDK_MUTEX_UNLOCK(m_socket_mtx)
|
|
// note: one extra for configuration socket
|
|
#define NUM_SOCKETS SOCKET_MAX_SOCKET_COUNT + 1
|
|
|
|
SDK_MUTEX_DEFINE(m_socket_mtx) /**< Mutex for protecting m_socket_table (not individual entries). */
|
|
|
|
#define SCHED_QUEUE_SIZE 16 /**< Maximum number of events in the scheduler queue. */
|
|
#define SCHED_MAX_EVENT_DATA_SIZE 192 /**< Maximum size of scheduler events. */
|
|
|
|
static bool m_initialization_state = false; /**< Variable to maintain module initialization state. */
|
|
static volatile bool m_interface_up = false; /**< Interface state. */
|
|
static socket_t m_socket_table[NUM_SOCKETS]; /**< Socket table. */
|
|
|
|
const struct in6_addr in6addr_any = { {0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, /**< IPv6 anycast address. */
|
|
0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u} };
|
|
|
|
#if defined (NRF_LOG_ENABLED) && (NRF_LOG_ENABLED == 1)
|
|
|
|
void log_init(void)
|
|
{
|
|
ret_code_t err_code = NRF_LOG_INIT(NULL);
|
|
APP_ERROR_CHECK(err_code);
|
|
|
|
NRF_LOG_DEFAULT_BACKENDS_INIT();
|
|
}
|
|
|
|
#else // defined (NRF_LOG_ENABLED) && (NRF_LOG_ENABLED == 1)
|
|
|
|
void log_init(void)
|
|
{
|
|
;
|
|
}
|
|
|
|
#endif // defined (NRF_LOG_ENABLED) && (NRF_LOG_ENABLED == 1)
|
|
|
|
uint32_t socket_init(void)
|
|
{
|
|
memset(m_socket_table, 0, sizeof(m_socket_table));
|
|
|
|
SOCKET_MUTEX_INIT();
|
|
|
|
log_init();
|
|
|
|
uint32_t err_code = nrf_mem_init();
|
|
APP_ERROR_CHECK(err_code);
|
|
|
|
APP_SCHED_INIT(SCHED_MAX_EVENT_DATA_SIZE, SCHED_QUEUE_SIZE);
|
|
|
|
err_code = app_timer_init();
|
|
APP_ERROR_CHECK(err_code);
|
|
|
|
err_code = config_socket_init();
|
|
APP_ERROR_CHECK(err_code);
|
|
|
|
#if SOCKET_TRANSPORT_ENABLE == 1
|
|
err_code = portdb_init(SOCKET_MAX_SOCKET_COUNT);
|
|
APP_ERROR_CHECK(err_code);
|
|
|
|
transport_handler_init();
|
|
#endif
|
|
config_socket_start();
|
|
m_initialization_state = true;
|
|
|
|
SOCKET_TRACE("Socket init complete");
|
|
|
|
return NRF_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* Finds a free entry in the socket table, marks it as used and returns it. Returns -1 if no entry
|
|
* was found.
|
|
*/
|
|
static int socket_allocate(socket_t ** pp_socket)
|
|
{
|
|
int ret_sock = -1;
|
|
SOCKET_MUTEX_LOCK();
|
|
for (int sock = 0; sock < NUM_SOCKETS; sock++)
|
|
{
|
|
SOCKET_TRACE("Looking at socket %d with state %d", (int)sock, m_socket_table[sock].so_state);
|
|
if (m_socket_table[sock].so_state == STATE_CLOSED)
|
|
{
|
|
m_socket_table[sock].so_state = STATE_OPEN;
|
|
ret_sock = sock;
|
|
*pp_socket = &m_socket_table[sock];
|
|
break;
|
|
}
|
|
}
|
|
if (ret_sock < 0)
|
|
{
|
|
set_errno(EMFILE);
|
|
}
|
|
SOCKET_MUTEX_UNLOCK();
|
|
return ret_sock;
|
|
}
|
|
|
|
static socket_t * socket_find(int sock)
|
|
{
|
|
SOCKET_MUTEX_LOCK();
|
|
socket_t * p_socket = &m_socket_table[sock];
|
|
SOCKET_MUTEX_UNLOCK();
|
|
return p_socket;
|
|
}
|
|
|
|
static void socket_free(int sock)
|
|
{
|
|
SOCKET_TRACE("Freeing socket %d", (int)sock);
|
|
SOCKET_MUTEX_LOCK();
|
|
memset(&m_socket_table[sock], 0, sizeof(m_socket_table[sock]));
|
|
m_socket_table[sock].so_state = STATE_CLOSED;
|
|
SOCKET_MUTEX_UNLOCK();
|
|
}
|
|
|
|
#if SOCKET_TRANSPORT_ENABLE == 1
|
|
void transport_interface_up(void)
|
|
{
|
|
m_interface_up = true;
|
|
}
|
|
|
|
void transport_interface_down(void)
|
|
{
|
|
m_interface_up = false;
|
|
for (int sock = 0; sock < NUM_SOCKETS; sock++)
|
|
{
|
|
(void) close(sock);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
int fcntl(int fd, int cmd, int flags)
|
|
{
|
|
VERIFY_MODULE_IS_INITIALIZED();
|
|
VERIFY_SOCKET_ID(fd);
|
|
|
|
if (!((cmd == F_SETFL) || (cmd == F_GETFL)))
|
|
{
|
|
set_errno(EINVAL);
|
|
return -1;
|
|
}
|
|
socket_t * p_socket = socket_find(fd);
|
|
|
|
if (cmd == F_SETFL)
|
|
{
|
|
p_socket->so_flags = flags;
|
|
}
|
|
else if (cmd == F_GETFL)
|
|
{
|
|
return p_socket->so_flags;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void socket_set_errno(uint32_t err_code)
|
|
{
|
|
switch (err_code) {
|
|
case UDP_INTERFACE_NOT_READY: // fallthrough
|
|
case SOCKET_INTERFACE_NOT_READY:
|
|
set_errno(ENETDOWN);
|
|
break;
|
|
case SOCKET_WOULD_BLOCK:
|
|
set_errno(EAGAIN);
|
|
break;
|
|
case SOCKET_NO_ROUTE:
|
|
set_errno(ENETUNREACH);
|
|
break;
|
|
case NRF_ERROR_NO_MEM: // fallthrough
|
|
case SOCKET_NO_MEM:
|
|
set_errno(ENOMEM);
|
|
break;
|
|
case SOCKET_TIMEOUT:
|
|
set_errno(ETIMEDOUT);
|
|
break;
|
|
case SOCKET_NO_AVAILABLE_PORTS:
|
|
set_errno(EMFILE);
|
|
break;
|
|
case SOCKET_PORT_IN_USE: // fallthrough
|
|
case SOCKET_ADDRESS_IN_USE:
|
|
set_errno(EADDRINUSE);
|
|
break;
|
|
case SOCKET_INVALID_PARAM:
|
|
set_errno(EINVAL);
|
|
break;
|
|
case SOCKET_UNSUPPORTED_PROTOCOL:
|
|
set_errno(EPROTONOSUPPORT);
|
|
break;
|
|
case SOCKET_NOT_CONNECTED:
|
|
set_errno(ENOTCONN);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
int socket(socket_family_t family, socket_type_t type, socket_protocol_t protocol)
|
|
{
|
|
if (m_initialization_state == false)
|
|
{
|
|
(void) socket_init();
|
|
}
|
|
VERIFY_MODULE_IS_INITIALIZED();
|
|
|
|
int ret_sock = -1;
|
|
socket_t * p_socket = NULL;
|
|
int sock = socket_allocate(&p_socket);
|
|
SOCKET_TRACE("Got value %d from allocate", (int)sock);
|
|
if (sock >= 0)
|
|
{
|
|
p_socket->so_params.so_family = family;
|
|
p_socket->so_params.so_protocol = protocol;
|
|
p_socket->so_params.so_type = type;
|
|
p_socket->so_transport = NULL;
|
|
|
|
if (family == AF_INET6)
|
|
{
|
|
#if SOCKET_TRANSPORT_ENABLE == 1
|
|
p_socket->so_transport = &transport_impl;
|
|
#else
|
|
set_errno(EAFNOSUPPORT);
|
|
#endif
|
|
}
|
|
else if (family == AF_NRF_CFG || family == AF_NRF_CFG_INTERNAL)
|
|
{
|
|
p_socket->so_transport = &config_socket_transport;
|
|
}
|
|
else
|
|
{
|
|
set_errno(EAFNOSUPPORT);
|
|
}
|
|
|
|
if (p_socket->so_transport != NULL)
|
|
{
|
|
uint32_t err_code = p_socket->so_transport->open(p_socket);
|
|
socket_set_errno(err_code);
|
|
ret_sock = (err_code == NRF_SUCCESS) ? sock : ret_sock;
|
|
}
|
|
|
|
if (ret_sock < 0)
|
|
{
|
|
socket_free(sock);
|
|
}
|
|
}
|
|
SOCKET_TRACE("Returning socket value %d", (int)ret_sock);
|
|
return ret_sock;
|
|
}
|
|
|
|
static uint32_t wait_interface_up(void)
|
|
{
|
|
SOCKET_TRACE("Waiting for interface to come up");
|
|
uint32_t err_code = NRF_SUCCESS;
|
|
while (err_code == NRF_SUCCESS && m_interface_up == false)
|
|
{
|
|
err_code = socket_wait();
|
|
}
|
|
if (m_interface_up == true)
|
|
{
|
|
SOCKET_TRACE("Interface is up!");
|
|
}
|
|
return err_code;
|
|
}
|
|
|
|
static uint32_t socket_interface_up(bool is_blocking)
|
|
{
|
|
uint32_t err_code = NRF_SUCCESS;
|
|
if (m_interface_up == false)
|
|
{
|
|
if (is_blocking)
|
|
{
|
|
(void) wait_interface_up();
|
|
}
|
|
}
|
|
if (m_interface_up == false)
|
|
{
|
|
err_code = SOCKET_INTERFACE_NOT_READY;
|
|
}
|
|
return err_code;
|
|
}
|
|
|
|
int connect(int sock, const void * p_addr, socklen_t addrlen)
|
|
{
|
|
VERIFY_MODULE_IS_INITIALIZED();
|
|
VERIFY_SOCKET_ID(sock);
|
|
NULL_PARAM_CHECK(p_addr);
|
|
|
|
socket_t * p_socket = socket_find(sock);
|
|
bool is_blocking = ((p_socket->so_flags & O_NONBLOCK) == 0);
|
|
int ret = -1;
|
|
|
|
uint32_t err_code = socket_interface_up(is_blocking);
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
socket_set_errno(err_code);
|
|
}
|
|
else if (p_socket->so_state == STATE_OPEN)
|
|
{
|
|
err_code = p_socket->so_transport->connect(p_socket, p_addr, addrlen);
|
|
if (err_code == NRF_SUCCESS)
|
|
{
|
|
p_socket->so_state = STATE_CONNECTED;
|
|
ret = 0;
|
|
}
|
|
socket_set_errno(err_code);
|
|
}
|
|
else if (p_socket->so_state == STATE_CONNECTED)
|
|
{
|
|
set_errno(EISCONN);
|
|
}
|
|
else if (p_socket->so_state == STATE_CLOSED)
|
|
{
|
|
set_errno(EBADF);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
ssize_t sendto(int sock,
|
|
const void * p_buf,
|
|
size_t buflen,
|
|
int flags,
|
|
const void * p_servaddr,
|
|
socklen_t addrlen)
|
|
{
|
|
VERIFY_MODULE_IS_INITIALIZED();
|
|
VERIFY_SOCKET_ID(sock);
|
|
NULL_PARAM_CHECK(p_buf);
|
|
|
|
socket_t * p_socket = socket_find(sock);
|
|
|
|
if ((p_socket->so_flags & O_NONBLOCK) != 0 &&
|
|
(flags & MSG_WAITALL) == 0)
|
|
{
|
|
flags |= MSG_DONTWAIT;
|
|
}
|
|
|
|
uint32_t err_code = socket_interface_up(((p_socket->so_flags & O_NONBLOCK) == 0) || ((flags & MSG_DONTWAIT) == 0));
|
|
|
|
ssize_t ret = -1;
|
|
if (err_code == NRF_SUCCESS)
|
|
{
|
|
err_code = p_socket->so_transport->send(p_socket, p_buf, buflen, flags, p_servaddr, addrlen);
|
|
if (err_code == NRF_SUCCESS)
|
|
{
|
|
ret = (ssize_t) buflen;
|
|
}
|
|
}
|
|
socket_set_errno(err_code);
|
|
return ret;
|
|
}
|
|
|
|
ssize_t send(int sock, const void * p_buf, size_t buflen, int flags)
|
|
{
|
|
return sendto(sock, p_buf, buflen, flags, NULL, 0);
|
|
}
|
|
|
|
ssize_t write(int sock, const void * p_buf, size_t buflen)
|
|
{
|
|
return send(sock, p_buf, buflen, 0);
|
|
}
|
|
|
|
ssize_t recvfrom(int sock,
|
|
void * p_buf,
|
|
size_t buf_size,
|
|
int flags,
|
|
void * p_cliaddr,
|
|
socklen_t * p_addrlen)
|
|
{
|
|
VERIFY_MODULE_IS_INITIALIZED();
|
|
VERIFY_SOCKET_ID(sock);
|
|
NULL_PARAM_CHECK(p_buf);
|
|
|
|
socket_t * p_socket = socket_find(sock);
|
|
ssize_t ret = -1;
|
|
uint32_t recv_size = buf_size;
|
|
|
|
uint32_t err_code = p_socket->so_transport->recv(p_socket,
|
|
p_buf,
|
|
&recv_size,
|
|
flags,
|
|
p_cliaddr,
|
|
p_addrlen);
|
|
if (err_code == NRF_SUCCESS)
|
|
{
|
|
ret = (ssize_t) recv_size;
|
|
}
|
|
socket_set_errno(err_code);
|
|
return ret;
|
|
}
|
|
|
|
ssize_t recv(int sock, void * p_buf, size_t buf_size, int flags)
|
|
{
|
|
return recvfrom(sock, p_buf, buf_size, flags, NULL, NULL);
|
|
}
|
|
|
|
ssize_t read(int sock, void * p_buf, size_t buf_size)
|
|
{
|
|
return recv(sock, p_buf, buf_size, 0);
|
|
}
|
|
|
|
int setsockopt(int sock,
|
|
socket_opt_lvl_t level,
|
|
int optname,
|
|
const void * p_optval,
|
|
socklen_t optlen)
|
|
{
|
|
VERIFY_MODULE_IS_INITIALIZED();
|
|
VERIFY_SOCKET_ID(sock);
|
|
|
|
socket_t * p_socket = socket_find(sock);
|
|
|
|
uint32_t err_code = p_socket->so_transport->setsockopt(p_socket,
|
|
level,
|
|
optname,
|
|
p_optval,
|
|
optlen);
|
|
socket_set_errno(err_code);
|
|
return (err_code == NRF_SUCCESS ? 0 : -1);
|
|
}
|
|
|
|
int getsockopt(int sock, socket_opt_lvl_t level, int optname, void * p_optval, socklen_t * p_optlen)
|
|
{
|
|
VERIFY_MODULE_IS_INITIALIZED();
|
|
VERIFY_SOCKET_ID(sock);
|
|
|
|
socket_t * p_socket = socket_find(sock);
|
|
|
|
uint32_t err_code = p_socket->so_transport->getsockopt(p_socket,
|
|
level,
|
|
optname,
|
|
p_optval,
|
|
p_optlen);
|
|
socket_set_errno(err_code);
|
|
return (err_code == NRF_SUCCESS ? 0 : -1);
|
|
}
|
|
|
|
int bind(int sock, const void * p_addr, socklen_t addrlen)
|
|
{
|
|
VERIFY_MODULE_IS_INITIALIZED();
|
|
VERIFY_SOCKET_ID(sock);
|
|
NULL_PARAM_CHECK(p_addr);
|
|
|
|
socket_t * p_socket = socket_find(sock);
|
|
bool is_blocking = ((p_socket->so_flags & O_NONBLOCK) == 0);
|
|
int ret = -1;
|
|
|
|
uint32_t err_code = socket_interface_up(is_blocking);
|
|
if (err_code == NRF_SUCCESS)
|
|
{
|
|
err_code = p_socket->so_transport->bind(p_socket, p_addr, addrlen);
|
|
}
|
|
if (err_code == NRF_SUCCESS)
|
|
{
|
|
ret = 0;
|
|
}
|
|
socket_set_errno(err_code);
|
|
return ret;
|
|
}
|
|
|
|
int listen(int sock, int backlog)
|
|
{
|
|
VERIFY_MODULE_IS_INITIALIZED();
|
|
VERIFY_SOCKET_ID(sock);
|
|
|
|
socket_t * p_socket = socket_find(sock);
|
|
|
|
uint32_t err_code = p_socket->so_transport->listen(p_socket, backlog);
|
|
return (err_code == NRF_SUCCESS ? 0 : -1);
|
|
}
|
|
|
|
int accept(int sock, void * p_cliaddr, socklen_t * p_addrlen)
|
|
{
|
|
VERIFY_MODULE_IS_INITIALIZED();
|
|
VERIFY_SOCKET_ID(sock);
|
|
NULL_PARAM_CHECK(p_cliaddr);
|
|
NULL_PARAM_CHECK(p_addrlen);
|
|
|
|
socket_t * p_socket = socket_find(sock);
|
|
int ret = -1;
|
|
|
|
if (p_socket->so_params.so_type != SOCK_STREAM)
|
|
{
|
|
set_errno(EOPNOTSUPP);
|
|
}
|
|
else
|
|
{
|
|
uint32_t err_code = NRF_SUCCESS;
|
|
socket_t * p_client = NULL;
|
|
int sock_cli = socket_allocate(&p_client);
|
|
if (sock_cli >= 0)
|
|
{
|
|
p_client->so_params = p_socket->so_params;
|
|
p_client->so_state = STATE_CONNECTED;
|
|
p_client->so_transport = p_socket->so_transport;
|
|
err_code = p_socket->so_transport->accept(p_socket, p_client, p_cliaddr, p_addrlen);
|
|
}
|
|
|
|
if (err_code == NRF_SUCCESS)
|
|
{
|
|
ret = sock_cli;
|
|
}
|
|
else
|
|
{
|
|
socket_set_errno(err_code);
|
|
socket_free(sock_cli);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int close(int sock)
|
|
{
|
|
VERIFY_MODULE_IS_INITIALIZED();
|
|
VERIFY_SOCKET_ID(sock);
|
|
|
|
socket_t * p_socket = socket_find(sock);
|
|
int ret = 0;
|
|
|
|
if (p_socket->so_state != STATE_CLOSED)
|
|
{
|
|
uint32_t err_code = p_socket->so_transport->close(p_socket);
|
|
ret = (err_code == NRF_SUCCESS) ? 0 : -1;
|
|
SOCKET_TRACE("Close socket %d: ret: %d", (int)sock, ret);
|
|
socket_free(sock);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int fd_set_cmp(fd_set * set_a, fd_set * set_b)
|
|
{
|
|
int ret = 0;
|
|
if (set_a != NULL && set_b != NULL)
|
|
{
|
|
for (uint32_t i = 0; i < FD_SETSIZE; i++)
|
|
{
|
|
if (FD_ISSET(i, set_a) != FD_ISSET(i, set_b))
|
|
{
|
|
ret = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int select(int nfds,
|
|
fd_set * p_readset,
|
|
fd_set * p_writeset,
|
|
fd_set * p_exceptset,
|
|
const struct timeval * p_timeout)
|
|
{
|
|
VERIFY_SOCKET_ID(nfds - 1);
|
|
|
|
// Approximately 10 ms sleep between each iteration
|
|
uint32_t timestep = 10000;
|
|
uint32_t endtime = 0;
|
|
if (p_timeout != NULL)
|
|
{
|
|
endtime = (p_timeout->tv_sec * 1000000) + p_timeout->tv_usec;
|
|
}
|
|
fd_set readset;
|
|
FD_ZERO(&readset);
|
|
fd_set writeset;
|
|
FD_ZERO(&writeset);
|
|
fd_set exceptset;
|
|
FD_ZERO(&exceptset);
|
|
|
|
#define SELECT_CHECK_SET(in_set, out_set, evt_var) \
|
|
if ((in_set) != NULL) \
|
|
{ \
|
|
if (FD_ISSET(sock, (in_set)) && (evt_var) > 0) \
|
|
{ \
|
|
FD_SET(sock, (out_set)); \
|
|
num_ready++; \
|
|
} \
|
|
else \
|
|
{ \
|
|
FD_CLR(sock, (out_set)); \
|
|
} \
|
|
}
|
|
|
|
int num_ready = 0;
|
|
uint32_t err_code = NRF_SUCCESS;
|
|
while (err_code == NRF_SUCCESS)
|
|
{
|
|
for (int sock = 0; sock < nfds; sock++)
|
|
{
|
|
socket_t * p_socket = socket_find(sock);
|
|
SELECT_CHECK_SET(p_readset, &readset, p_socket->so_read_evt);
|
|
SELECT_CHECK_SET(p_writeset, &writeset, p_socket->so_write_evt);
|
|
SELECT_CHECK_SET(p_exceptset, &exceptset, p_socket->so_except_evt);
|
|
}
|
|
// TODO: Check out how app events queue up while we checked the socket
|
|
if (fd_set_cmp(p_readset, &readset) == 0 &&
|
|
fd_set_cmp(p_writeset, &writeset) == 0 &&
|
|
fd_set_cmp(p_exceptset, &exceptset) == 0)
|
|
|
|
{
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
if (p_timeout == NULL)
|
|
{
|
|
err_code = socket_wait();
|
|
}
|
|
else if (endtime - timestep < endtime)
|
|
{
|
|
(void) usleep(timestep);
|
|
endtime -= timestep;
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
return num_ready;
|
|
}
|
|
|