bldc-driver/rtl/library/drv8353r_driver.v

254 lines
5.7 KiB
Verilog

// this module configures the DRV8353,
// leaving the PWM for a different module
// if the fault pin is triggered
// it will read the fault status registers
// and assert the appropriate output wire
// it also allows disabling/enabling
// the MOSFETs using the coast/brake pins
// in the driver control register
module drv8353r_driver(
input clk,
input rst,
input en,
input drv_fault_n,
output drv_en,
output drv_cs_n,
output drv_sck,
output drv_sdi,
input drv_sdo,
// assert stop with the coast_nbrake
// bit to disable the gate drivers
input stop,
input coast_nbrake,
input clear_fault,
output rdy,
output fault_a,
output fault_b,
output fault_c
);
parameter WAIT_TIME = 98;
wire [15:0] driver_control;
wire [15:0] hs_control;
wire [15:0] ls_control;
wire [15:0] ocp_control;
wire [15:0] csa_control;
assign driver_control = {
4'b0010, // address = 0x02
1'b1, // write
1'b0, // OCP_ACT, shutdown affected half bridge on fault
1'b0, // DIS_GDUV, undervoltage enabled
1'b0, // DIS_GDF, gate drive fault enabled
1'b0, // OTW_REP, overtemp not reported
2'b01, // PWM_MODE, 3x PWM mode
1'b0, // 1PWM_COM, 1x PWM uses synchronous rectifier
1'b0, // 1PWM_DIR, default
1'b0, // COAST, disabled
1'b0, // BRAKE, disabled
1'b0 // CLR_FLT, no clear
};
// TODO actually calculate HS/LS gate drive
// requirements
assign hs_control = {
4'b0011, // address = 0x03
1'b1, // write
3'b000, // LOCK, don't lock or unlock
4'b0100, // IDRIVEP_HS, 300 mA
4'b0010 // IDRIVEN_HS, 200 mA
};
assign ls_control = {
4'b0100, // address = 0x04
1'b1, // write
1'b1, // CBC, OCP conditions reset when PWM is provided
2'b11, // TDRIVE = 4000 ns gate-current drive time
4'b0100, // IDRIVEP_LS, 300 mA
4'b0010 // IDRIVEN_LS, 200 mA
};
assign ocp_control = {
4'b0101, // address = 0x05
1'b1, // write
1'b0, // TRETRY, VDS_OCP/SEN_OCP retry time is 8ms
2'b01, // DEAD_TIME, 100 ns deadtime
2'b01, // OCP_MODE, overcurrent causes automatic retry
2'b10, // OCP_DEG, 4us overcurrent deglitch
4'b1101 // VDS_LVL, 1V
};
assign csa_control = {
4'b0110, // address = 0x06
1'b1, // write
1'b0, // CSA_FET = SPx
1'b0, // VREF_DIV, unidirectional
1'b0, // LS_REF, VDS_OCP is measured from SHx to SNx
2'b10, // CSA_GAIN, 20V/V
1'b0, // DIS_SEN overcurrent fault enabled
1'b0, // CSA_CAL_A, normal operation
1'b0, // CSA_CAL_B, normal operation
1'b0, // CSA_CAL_C, normal operation
2'b11 // SEN_LVL, OCP 1 V
};
wire [3:0] cur_bit;
wire [7:0] config_bits;
assign config_bits[0] = driver_control[cur_bit];
assign config_bits[1] = hs_control[cur_bit];
assign config_bits[2] = ls_control[cur_bit];
assign config_bits[3] =
ocp_control[cur_bit];
assign config_bits[4] =
csa_control[cur_bit];
assign config_bits[7:5] = 3'b000;
localparam IDLE = 0,
INIT = 1,
CONFIG = 2,
READY = 3;
reg [2:0] state = IDLE;
reg [2:0] state_next;
assign rdy = (state == READY);
reg drv_en_ff = 0;
reg drv_cs_n_ff = 1;
reg drv_sck_ff = 1;
reg drv_sdi_ff = 0;
reg drv_en_next, drv_cs_n_next;
reg drv_sck_next, drv_sdi_next;
assign drv_en = drv_en_ff;
assign drv_cs_n = drv_cs_n_ff;
assign drv_sck = drv_sck_ff;
assign drv_sdi = drv_sdi_ff;
reg [7:0] count = 0;
reg [7:0] count_next;
reg [7:0] msb_count = 0;
reg [7:0] msb_count_next;
assign cur_bit = 15 - count[6:3];
reg [2:0] cur_reg = 0;
reg [2:0] cur_reg_next;
reg fault_a_ff = 0;
reg fault_b_ff = 0;
reg fault_c_ff = 0;
assign fault_a = fault_a_ff;
assign fault_b = fault_b_ff;
assign fault_c = fault_c_ff;
always @* begin
state_next = state;
drv_en_next = 0;
drv_cs_n_next = 1;
drv_sck_next = 0;
drv_sdi_next = 0;
cur_reg_next = 0;
count_next = count;
msb_count_next = msb_count;
case (state)
IDLE: begin
if (en) begin
state_next = INIT;
drv_en_next = 1;
count_next = 0;
end
end
INIT: begin
drv_en_next = 1;
// wait 1 ms before trying to configure
count_next = count + 1;
if (&count_next) begin
msb_count_next = msb_count;
end
if (msb_count == WAIT_TIME) begin
cur_reg_next = 0;
state_next = CONFIG;
count_next = 0;
end
end
CONFIG: begin
// write all the configuration bits
// to the DRV8353
drv_en_next = 1;
drv_cs_n_next = drv_cs_n_ff;
drv_sck_next = drv_sck_ff;
drv_sdi_next = drv_sdi_ff;
cur_reg_next = cur_reg;
count_next = count + 1;
// 8x downsample
if (&count[1:0]) begin
if (count[7:2] == 0) begin
drv_cs_n_next = 0;
end
drv_sck_next = count[2];
if (count[7:2] == 33) begin
drv_cs_n_next = 1;
count_next = 0;
cur_reg_next = cur_reg + 1;
drv_sck_next = 0;
if (cur_reg == 4) begin
state_next = READY;
end
end
// write the next bit on high transitions
if (count[2]) begin
drv_sdi_next = config_bits[cur_reg];
end
end
end
READY: begin
drv_en_next = 1;
// TODO if there are faults read
// the status register to output
// the appropriate info
// TODO if a stop is commanded
// write to the register
// to stop the motor driver
// TODO if a stop is deasserted
// write to the register to
// reenable the motor driver
end
endcase
if (rst) begin
state_next = IDLE;
drv_en_next = 0;
drv_cs_n_next = 1;
drv_sck_next = 1;
drv_sdi_next = 0;
end
end
always @(posedge clk) begin
state <= state_next;
drv_en_ff <= drv_en_next;
drv_cs_n_ff <= drv_cs_n_next;
drv_sck_ff <= drv_sck_next;
drv_sdi_ff <= drv_sdi_next;
count <= count_next;
msb_count <= msb_count_next;
cur_reg <= cur_reg_next;
end
endmodule